Reducing excess brain activity improves memory in aMCI

June, 2012

A small study supports the view that excess activity in the hippocampus seen in aMCI is not compensatory but a sign of dysfunction, and shows that an epileptic drug reduces activity and improves memory.

Interpreting brain activity is a very tricky business. Even the most basic difference can be interpreted in two ways — i.e., what does it mean if a region is more active in one group of people compared to another? A new study not only indicates a new therapeutic approach to amnestic mild cognitive impairment, but also demonstrates the folly of assuming that greater activity is good.

Higher activity in the dentate gyrus/CA3 region of the hippocampus is often seen in disorders associated with an increased Alzheimer's risk, such as aMCI. It’s been thought, reasonably enough, that this might reflect compensatory activity, as the brain recruits extra resources in the face of memory loss. But rodent studies have suggested an alternative interpretation: that the increased activity might itself be part of the problem.

Following on from animal studies, this new study has investigated the effects of a drug that reduces hippocampal hyperactivity. The drug, levetiracetam, is used to treat epilepsy. The 17 patients with aMCI (average age 73) were given a placebo in the first two-week treatment phase and a low dose of the epilepsy drug during the second treatment phase, while 17 controls (average age 69) were given a placebo in both treatment phases. The treatments were separated by four weeks, and brain scans were given at the end of each phase. Participants carried out a cognitive task designed to assess memory errors attributable to a dysfunction in the dentate gyrus/CA3 region (note that these neighboring areas are not clearly demarcated from each other, and so are best analyzed as one).

As predicted, those with aMCI showed greater activity in this region, and treatment with the drug significantly reduced that activity. The drug treatment also significantly improved their performance on the three-choice recognition task, with a significant decrease in memory errors. It did not have a significant effect on general cognition or memory (as measured by delayed recall on the Verbal Paired Associates subtest of the Wechsler Memory Scale, the Benton Visual Retention Test, and the Buschke Selective Reminding Test).

These findings make it clear that the excess activity in the hippocampus is not compensatory, and also point to the therapeutic value of targeting this hyperactivity for those with aMCI. It also raises the possibility that other conditions might benefit from this approach. For example, those who carry the Alzheimer’s gene, APOE4, also show increased hippocampal activity.

Reference: 

Related News

The study involved 74 non-smokers with amnestic

More data from the long-running Mayo Clinic Study of Aging has revealed that, in this one part of the U.S.

We know that physical exercise greatly helps you prevent cognitive decline with aging. We know that mental stimulation also helps you prevent age-related cognitive decline. So it was only a matter of time before someone came up with a way of combining the two.

The age at which cognitive decline begins has been the subject of much debate. The Seattle longitudinal study has provided most of the evidence that it doesn’t begin until age 60.

The study involved 104 healthy older adults (average age 87) participating in the Oregon Brain Aging Study.

Growing evidence points to greater education and mentally stimulating occupations and activities providing a

A study involving 159 older adults (average age 76) has confirmed that the amount of brain tissue in specific regions is a predictor of Alzheimer’s disease development.

The olfactory bulb is in the oldest part of our brain. It connects directly to the

Why is diabetes associated with cognitive impairment and even dementia in older adults? New research pinpoints two molecules that trigger a cascade of events that end in poor blood flow and brain atrophy.

Iron deficiency is the world's single most common nutrient deficiency, and a well-known cause of impaired cognitive, language, and motor development. Many countries therefore routinely supplement infant foods with iron.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news