Reducing excess brain activity improves memory in aMCI

June, 2012

A small study supports the view that excess activity in the hippocampus seen in aMCI is not compensatory but a sign of dysfunction, and shows that an epileptic drug reduces activity and improves memory.

Interpreting brain activity is a very tricky business. Even the most basic difference can be interpreted in two ways — i.e., what does it mean if a region is more active in one group of people compared to another? A new study not only indicates a new therapeutic approach to amnestic mild cognitive impairment, but also demonstrates the folly of assuming that greater activity is good.

Higher activity in the dentate gyrus/CA3 region of the hippocampus is often seen in disorders associated with an increased Alzheimer's risk, such as aMCI. It’s been thought, reasonably enough, that this might reflect compensatory activity, as the brain recruits extra resources in the face of memory loss. But rodent studies have suggested an alternative interpretation: that the increased activity might itself be part of the problem.

Following on from animal studies, this new study has investigated the effects of a drug that reduces hippocampal hyperactivity. The drug, levetiracetam, is used to treat epilepsy. The 17 patients with aMCI (average age 73) were given a placebo in the first two-week treatment phase and a low dose of the epilepsy drug during the second treatment phase, while 17 controls (average age 69) were given a placebo in both treatment phases. The treatments were separated by four weeks, and brain scans were given at the end of each phase. Participants carried out a cognitive task designed to assess memory errors attributable to a dysfunction in the dentate gyrus/CA3 region (note that these neighboring areas are not clearly demarcated from each other, and so are best analyzed as one).

As predicted, those with aMCI showed greater activity in this region, and treatment with the drug significantly reduced that activity. The drug treatment also significantly improved their performance on the three-choice recognition task, with a significant decrease in memory errors. It did not have a significant effect on general cognition or memory (as measured by delayed recall on the Verbal Paired Associates subtest of the Wechsler Memory Scale, the Benton Visual Retention Test, and the Buschke Selective Reminding Test).

These findings make it clear that the excess activity in the hippocampus is not compensatory, and also point to the therapeutic value of targeting this hyperactivity for those with aMCI. It also raises the possibility that other conditions might benefit from this approach. For example, those who carry the Alzheimer’s gene, APOE4, also show increased hippocampal activity.

Reference: 

Related News

Following on from research showing that long-term meditation is associated with gray matter increases across the brain, an imaging study involving 27 long-term meditators (average age 52) and 27 controls (matched by age and sex) has revealed pronounced differences in white-matter connectivity be

Another study showing the value of exercise for preserving your mental faculties in old age.

It wasn’t so long ago we believed that only young brains could make neurons, that once a brain was fully matured all it could do was increase its connections. Then we found out adult brains could make new neurons too (but only in a couple of regions, albeit critical ones).

The brain tends to shrink with age, with different regions being more affected than others. Atrophy of the

A number of studies have demonstrated the cognitive benefits of music training for children. Now research is beginning to explore just how long those benefits last.

As we get older, when we suffer memory problems, we often laughingly talk about our brain being ‘full up’, with no room for more information. A new study suggests that in some sense (but not the direct one!) that’s true.

I commonly refer to ApoE4 as the ‘Alzheimer’s gene’, because it is the main genetic risk factor, tripling the risk for getting Alzheimer's. But it is not the only risky gene.

For the first time in 27 years, clinical diagnostic criteria for Alzheimer's disease dementia have been revised, and research guidelines updated. They mark a major change in how experts think about and study Alzheimer's disease.

A long-term study of older adults with similar levels of education has found that those with the thinnest

Growing evidence has pointed to the benefits of social and mental stimulation in preventing dementia, but until now no one has looked at the role of physical environment.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news