Study

Study & Education

Short online ‘pep talks’ can boost students

A large study shows how a 45-minute online intervention can improve struggling high school students' attitude to schoolwork, and thus their academic performance.

There's been a lot of talk in recent years about the importance of mindset in learning, with those who have a “growth mindset” (ie believe that intelligence can be developed) being more academically successful than those who believe that intelligence is a fixed attribute. A new study shows that a 45-minute online intervention can help struggling high school students.

The study involved 1,594 students in 13 U.S. high schools. They were randomly allocated to one of three intervention groups or the control group. The intervention groups either experienced an online program designed to develop a growth mindset, or an online program designed to foster a sense of purpose, or both programs (2 weeks apart). All interventions were expected to improve academic performance, especially in struggling students.

The interventions had no significant benefits for students who were doing okay, but were of significant benefit for those who had an initial GPA of 2 or less, or had failed at least one core subject (this group contained 519 students; a third of the total participants). For this group, each of the interventions was of similar benefit; interestingly, the combined intervention was less beneficial than either single intervention. It's plausibly suggested that this might be because the different messages weren't integrated, and students may have had some trouble in taking on board two separate messages.

Overall, for this group of students, semester grade point averages improved in core academic courses and the rate at which students performed satisfactorily in core courses increased by 6.4%.

GPA average in core subjects (math, English, science, social studies) was calculated at the end of the semester before the interventions, and at the end of the semester after the interventions. Brief questions before and after the interventions assessed the students' beliefs about intelligence, and their sense of meaningfulness about schoolwork.

GPA before intervention was positively associated with a growth mindset and a sense of purpose, explaining why the interventions had no effect on better students. Only the growth mindset intervention led to a more malleable view of intelligence; only the sense-of-purpose intervention led to a change in perception in the value of mundane academic tasks. Note that the combined intervention showed no such effects, suggesting that it had confused rather than enlightened!

In the growth mindset intervention, students read an article describing the brain’s ability to grow and reorganize itself as a consequence of hard work and good strategies. The message that difficulties don't indicate limited ability but rather provide learning opportunities, was reinforced in two writing exercises. The control group read similar materials, but with a focus on functional localization in the brain rather than its malleability.

In the sense-of-purpose interventions, students were asked to write about how they wished the world could be a better place. They read about the reasons why some students worked hard, such as “to make their families proud”; “to be a good example”; “to make a positive impact on the world”. They were then asked to think about their own goals and how school could help them achieve those objectives. The control group completed one of two modules that didn't differ in impact. In one, students described how their lives were different in high school compared to before. The other was much more similar to the intervention, except that the emphasis was on economic self-interest rather than social contribution.

The findings are interesting in showing that you can help poor learners with a simple intervention, but perhaps even more, for their indication that such interventions are best done in a more holistic and contextual way. A more integrated message would hopefully have been more effective, and surely ongoing reinforcement in the classroom would make an even bigger difference.

http://www.futurity.org/high-school-growth-mindset-910082/

Reference: 

Source: 

Topics: 

tags development: 

tags memworks: 

tags strategies: 

tags study: 

Media multitasking and academic achievement

Three recent studies point to the impact of social media and multiple device use on learning and cognitive control.

College students take years to learn to manage their social media so it doesn't impact their grades

A survey of 1,649 college students has found that freshmen average a total of two hours a day on Facebook, of which over an hour is spent also doing schoolwork, and that time spent on Facebook had a negative impact on their grade point average. For sophomores and juniors, only time spent using Facebook while doing schoolwork affected their GPA.

Topics: 

tags: 

tags problems: 

Language cues

Older news items (pre-2010) brought over from the old website

What I was doing vs. what I did: How verb aspect influences memory and behavior

A new study reveals that the way a statement is phrased (and specifically, how the verbs are used), affects our memory of an event being described and may also influence our behavior. The study involved volunteers doing a word game and being asked to stop and describe what they had been doing, using either the imperfect (e.g., I was solving word puzzles) or perfect (e.g., I solved word puzzles) tense. The volunteers then completed a memory test (for the word game) or a word game which was similar to the first one they had worked on. Those who had described their behavior in the imperfect tense were able to recall more specific details of their experience compared to volunteers who had described their behavior in the perfect tense; they also performed better on the second word game and were more willing to complete the task. It seems likely that use of the perfect encouraged people to see the task as completed, and thus less likely to spend more time on it, either mentally or physically. The effects did however decay over time.

[676] Hart, W., & Albarracín D.
(2009).  What I was doing versus what I did: verb aspect influences memory and future actions.
Psychological Science: A Journal of the American Psychological Society / APS. 20(2), 238 - 244.

http://www.eurekalert.org/pub_releases/2009-03/afps-wiw031009.php

How alliteration helps memory

Previous studies have shown that alliteration can act as a better tool for memory than both imagery and meaning. Now a series of experiments explains why and demonstrates the effect occurs whether you read aloud or silently, and whether the text is poetry or prose. The memory-enhancing property of alliteration appears to occur because the alliterative cues reactivated readers' memories for earlier words that were similar sounding. Alliteration, then, is most powerful when the same alliterative sounds are repeated throughout the text.

[1408] Lea, B. R., Rapp D. N., Elfenbein A., Mitchel A. D., & Romine R S.
(2008).  Sweet silent thought: alliteration and resonance in poetry comprehension.
Psychological Science: A Journal of the American Psychological Society / APS. 19(7), 709 - 716.

http://www.physorg.com/news136632182.html
http://www.eurekalert.org/pub_releases/2008-07/afps-tpo073008.php

Connection between language and movement

A study of all three groups of birds with vocal learning abilities – songbirds, parrots and hummingbirds – has revealed that the brain structures for singing and learning to sing are embedded in areas controlling movement, and areas in charge of movement share many functional similarities with the brain areas for singing. This suggests that the brain pathways used for vocal learning evolved out of the brain pathways used for motor control. Human brain structures for speech also lie adjacent to, and even within, areas that control movement. The findings may explain why humans talk with our hands and voice, and could open up new approaches to understanding speech disorders in humans. They are also consistent with the hypothesis that spoken language was preceded by gestural language, or communication based on movements. Support comes from another very recent study finding that mice engineered to have a mutation to the gene FOXP2 (known to cause problems with controlling the formation of words in humans) had trouble running on a treadmill.
Relatedly, a study of young children found that 5-year-olds do better on motor tasks when they talk to themselves out loud (either spontaneously or when told to do so by an adult) than when they are silent. The study also showed that children with behavioral problems (such as ADHD) tend to talk to themselves more often than children without signs of behavior problems. The findings suggest that teachers should be more tolerant of this kind of private speech.

[436] Feenders, G., Liedvogel M., Rivas M., Zapka M., Horita H., Hara E., et al.
(2008).  Molecular Mapping of Movement-Associated Areas in the Avian Brain: A Motor Theory for Vocal Learning Origin.
PLoS ONE. 3(3), e1768 - e1768.

[1235] Winsler, A., Manfra L., & Diaz R. M.
(2007).  "Should I let them talk?": Private speech and task performance among preschool children with and without behavior problems.
Early Childhood Research Quarterly. 22(2), 215 - 231.

http://www.physorg.com/news124526627.html
http://www.sciam.com/article.cfm?id=song-learning-birds-shed

http://www.eurekalert.org/pub_releases/2008-03/gmu-pkd032808.php

Kids learn more when mother is listening

Research has already shown that children learn well when they explain things to their mother or a peer, but that could be because they’re getting feedback and help. Now a new study has asked 4- and 5-year-olds to explain their solution to a problem to their moms (with the mothers listening silently), to themselves or to simply repeat the answer out loud. Explaining to themselves or to their moms improved the children's ability to solve similar problems, and explaining the answer to their moms helped them solve more difficult problems — presumably because explaining to mom made a difference in the quality of the child's explanations.

Rittle-Johnson, B., Saylor, M. & Swygert, K.E. 2008. Learning from explaining: Does it matter if mom is listening? Journal of Experimental Child Psychology, In press.

http://www.physorg.com/news120320713.html

Poetry as a memory and concentration aid

A research group at Dundee and St Andrews universities claim poems exercise the mind more than a novel. They found poetry generated far more eye movement, and also that people read poems more slowly, concentrating and re-reading individual lines more than they did with prose. Imaging also showed greater levels of cerebral activity when people listened to poems being read aloud. Interestingly, they also found this was true even when the poem and prose text had identical content; it appears people read poems in a different way than prose. The researchers suggest the findings have implications for the way English literature is taught in schools, and may be helpful for children with certain learning difficulties, or even age-related memory problems.

Carminati, M. N., Stabler, J., Roberts, A. M., & Fischer, M. H. (2006). Readers' responses to sub-genre and rhyme scheme in poetry. Poetics, 34(3),  204-218.

http://news.scotsman.com/arts.cfm?id=352752005

Support for labeling as an aid to memory

A study involving an amnesia-inducing drug has shed light on how we form new memories. Participants in the study participants viewed words, photographs of faces and landscapes, and abstract pictures one at a time on a computer screen. Twenty minutes later, they were shown the words and images again, one at a time. Half of the images they had seen earlier, and half were new. They were then asked whether they recognized each one. For one session they were given midazolam, a drug used to relieve anxiety during surgical procedures that also causes short-term anterograde amnesia, and for one session they were given a placebo.
It was found that the participants' memory while in the placebo condition was best for words, but the worst for abstract images. Midazolam impaired the recognition of words the most, impaired memory for the photos less, and impaired recognition of abstract pictures hardly at all. The finding reinforces the idea that the ability to recollect depends on the ability to link the stimulus to a context, and that unitization increases the chances of this linking occurring. While the words were very concrete and therefore easy to link to the experimental context, the photographs were of unknown people and unknown places and thus hard to distinctively label. The abstract images were also unfamiliar and not unitized into something that could be described with a single word.

[1216] Reder, L. M., Oates J. M., Thornton E. R., Quinlan J. J., Kaufer A., & Sauer J.
(2006).  Drug-Induced Amnesia Hurts Recognition, but Only for Memories That Can Be Unitized.
Psychological science : a journal of the American Psychological Society / APS. 17(7), 562 - 567.

http://www.sciencedaily.com/releases/2006/07/060719092800.htm

Language cues help visual learning in children

A study of 4-year-old children has found that language, in the form of specific kinds of sentences spoken aloud, helped them remember mirror image visual patterns. The children were shown cards bearing red and green vertical, horizontal and diagonal patterns that were mirror images of one another. When asked to choose the card that matched the one previously seen, the children tended to mistake the original card for its mirror image, showing how difficult it was for them to remember both color and location. However, if they were told, when viewing the original card, a mnemonic cue such as ‘The red part is on the left’, they performed “reliably better”.

The paper was presented by a graduate student at the 17th annual meeting of the American Psychological Society, held May 26-29 in Los Angeles.

http://www.eurekalert.org/pub_releases/2005-05/jhu-lc051705.php

tags strategies: 

Reading

Older news items (pre-2010) brought over from the old website

Literate Arabic speakers have bilingual brains

Research has found that Arabic-speaking students tend to be less proficient in reading than other students are in their native language. Spoken Arabic comes in a variety of dialects and is quite different from the common written Arabic (Modern Standard Arabic - MSA). A new imaging study has now compared brain activity in a priming task among trilinguals fluent in MSA, spoken Arabic and Hebrew. The results revealed that the cognitive process in using MSA was more similar to that employed for Hebrew, and less similar to the cognitive process of using the spoken native language. These results not only help explain why learning to read is more difficult for Arabic speakers, but also suggests that the most effective way of teaching written Arabic is by using techniques usually employed for the instruction of a second language — including exposing children to written Arabic in preschool or kindergarten.

Ibrahim, R. 2009. The cognitive basis of diglossia in Arabic: Evidence from a repetition priming study within and between languages. Journal of Psychology Research and Behavior Management, 2.

http://www.eurekalert.org/pub_releases/2009-11/uoh-wiu110409.php

Remedial reading program improves brain wiring in children

An imaging study involving 72 children aged 8 to 10 has provided the first evidence that intensive instruction to improve reading skills in young children causes the brain to physically rewire itself. The study found that the ability of white matter tracts to transmit signals efficiently improved substantially after the children received six months (100 hours) of remedial training. Moreover, those who showed the most white matter change also showed the most improvement in reading ability. Previous research has found that both children and adults with reading difficulty display areas of compromised white matter.

Keller, T.A. & Just, M.A. 2009. Altering Cortical Connectivity: Remediation-Induced Changes in the White Matter of Poor Readers. Neuron, 64 (5), 624-631.

http://www.physorg.com/news179584529.html

Remedial instruction can close gap between good, poor readers

A brain imaging study of poor readers has found that 100 hours of remedial instruction not only improved the skills of struggling readers, but also changed the way their brains activated when they comprehended written sentences. 25 fifth-graders who were poor readers worked in groups of three for an hour a day with a reading "personal trainer," a teacher specialized in administering a remedial reading program. The training included both word decoding exercises in which students were asked to recognize the word in its written form and tasks in using reading comprehension strategies. Brain scans while the children were reading revealed that the parietotemporal region — responsible for decoding the sounds of written language and assembling them into words and phrases that make up a sentence — was significantly less activated among the poor readers than in the control group. The increases in activation seen as a result of training were still evident, and even greater, a year later.
Although dyslexia is generally thought of as caused by difficulties in the visual perception of letters, leading to confusions between letters like "p" and "d", such difficulties occur in only about 10% of the cases. Most commonly, the problem lies in relating the visual form of a letter to its sound.

Meyler, A., Keller, T.A., Cherkassky, V.L., Gabrieli, J.D.E.  & Just, M.A.. 2008. Modifying the brain activation of poor readers during sentence comprehension with extended remedial instruction: A longitudinal study of neuroplasticity. Neuropsychologia, 46 (10), 2580-2592.

http://www.eurekalert.org/pub_releases/2008-06/cmu-cmb061108.php

Aircraft noise may affect children's reading and memory

A large study involving 2844 children aged 9-10 has found exposure to aircraft noise impaired reading comprehension. The children were selected from primary schools located near three major airports — Schiphol in the Netherlands, Barajas in Spain, and Heathrow in the UK. Reading age in children exposed to high levels of aircraft noise was delayed by up to 2 months in the UK and by up to 1 month in the Netherlands for each 5 decibel change in noise exposure. On the other hand, road traffic noise did not have an effect on reading and indeed was unexpectedly found to improve recall memory. An earlier German study found children attending schools near the old Munich airport improved their reading scores and cognitive memory performance when the airport shut down, while children going to school near the new airport experienced a decrease in testing scores.

Stansfield, S.A., Berglund, B., Clark, C., Lopez-Barrio, I., Fischer, P., Öhrstrom, E., Haines, M.M., Head, J., Hygge, S., van Kamp, I. & Berry, B.F. 2005. Aircraft and road traffic noise and children's cognition and health: a cross-national study. The Lancet, 365, 1942-1949.

http://www.eurekalert.org/pub_releases/2005-06/l-eta060105.php

Imaging study points to the importance of early stimulation in making good readers

A longitudinal study that used imaging to compare brain activation patterns has identified two types of reading disability: a primarily inherent type with higher cognitive ability (poor readers who compensate for disability), and a more environmentally influenced type with lower cognitive skills and attendance at more disadvantaged schools (persistently poor readers). Compensated poor readers were able to overcome some of the disability, improving their ability to read words accurately and to understand what they read. In contrast, the persistently poor readers continued to experience difficulties; as children these readers had lower cognitive ability and more often attended disadvantaged schools. Brain activation patterns showed a disruption in the neural systems for reading in compensated readers, while persistently poor readers had the neural circuitry for reading real words, but it had not been properly activated. The results suggest that providing early interventions aimed at stimulating both the ability to sound out words and to understand word meanings would be beneficial in children at risk for reading difficulties associated with disadvantage.

Shaywitz, S.E., Shaywitz, B.A., Fulbright, R.K., Skudlarski, P., Mencl, W.E., Constable, R.T., Pugh, K.R., Holahan, J.M., Marchione, K.E., Fletcher, J.M. et al. 2003. Neural systems for compensation and persistence: young adult outcome of childhood reading disability, Biological Psychiatry, 54 (1), 25-33.

http://www.eurekalert.org/pub_releases/2003-07/yu-yri071503.php

Neural changes produced by learning to read revealed

Understanding how our brain structures change as we learn to read is difficult because of the confounding with age and the learning of other skills. Studying adult learners is also problematic because in most educated societies adult illiteracy is typically the result of learning impairments or poor health. Now a new study involving 20 former guerrillas in Colombia who are learning to read for the first time as adults has found that these late-literates showed a number of significant brain differences compared to matched adult illiterates, including more white matter between various regions, and more grey matter in various left temporal and occipital regions important for recognizing letter shapes and translating letters into speech sounds and their meanings. Particularly important were connections between the left and right angular gyri in the parietal lobe. While this area has long been known as important for reading, its function turns out to have been misinterpreted — it now appears its main role is in anticipating what we will see. The findings will help in understanding the causes of dyslexia.

Carreiras, M. et al. 2009. An anatomical signature for literacy. Nature, 461 (7266), 983-986.

http://www.physorg.com/news174744233.html

The processes in reading

In a fascinating study, researchers have disentangled the three processes involved in reading: letter-by-letter decoding, whole word shape, and sentence context. They found that letter-by-letter decoding (phonics) determined 62% of reading speed, while context controlled 22% and word shape 16%.

Pelli, D.G. 7& Tillman, K.A. 2007. Parts, Wholes, and Context in Reading: A Triple Dissociation. PLoS ONE 2(8): e680.

Specific brain region for reading

Although a number of imaging studies have provided support for the idea that there’s a specific area of the brain that enables us to read efficiently by allowing us to process the visual image of entire words, the question is still debated — partly because the same area also seems to be involved in the recognition of other objects and partly because damage in this region has never been confined to this region alone. Now the experience of an epileptic requiring removal of a small area next to the so-called visual word-form area (VWFA) in the left occipito-temporal cortex has provided evidence of the region's importance for reading. After the operation, the patient’s ability to comprehend words was dramatically slower, and the results were consistent with him reading letter by letter. A brain scan confirmed that the VWFA no longer lit up when words were read, perhaps because the surgery severed its connection to other parts of the brain.

Gaillard, R. et. al. 2006. Direct Intracranial, fMRI, and Lesion Evidence for the Causal Role of Left Inferotemporal Cortex in Reading. Neuron, 50, 191-204.

Confirmation: boys have more literacy problems than girls

Previous research has suggested the reason that reading disabilities are more common among boys is that teachers simply tend to recognize the problem in boys more often. It is sometimes thought that boys are more disruptive, so the teachers pay more attention to them. However, new research investigating four previous large-scale studies of reading in children (2 New Zealand and 2 U.K.), involving a total of some 9,800 children, seems to make it clear that boys really do have more reading difficulties than girls. Across all the studies, about 20% of the boys had reading disabilities compared with about 11% of the girls. The studies used representative samples of children, not simply children already known to be having learning difficulties - a weakness of some previous research.

Rutter, M., Caspi, A., Fergusson, D., Horwood, L.J., Goodman, R., Maughan, B., Moffitt, T.E., Meltzer, H. & Carroll, J. 2004. Sex Differences in Developmental Reading Disability: New Findings From 4 Epidemiological Studies. JAMA, 291 (16), 2007-2012.

http://www.eurekalert.org/pub_releases/2004-05/uow-rrf051304.php

Reading verbs activates motor cortex areas

A new imaging study has surprised researchers by revealing that parts of the motor cortex respond when people do nothing more active than silently reading. However, the words read have to be action words. When such words are read, appropriate regions are activated – for example, reading “lick” will trigger blood flow in sites of the motor cortex associated with tongue and mouth movements. Moreover, activity also occurs in premotor brain regions that influence learning of new actions, as well as the language structures, Broca's area and Wernicke's area. The researchers suggest that these findings challenge the assumption that word meanings are processed solely in language structures – instead, our understanding of words depends on the integration of information from several interconnected brain structures that provide information about associated actions and sensations.

Hauk, O., Johnsrude, I. & Pulvermüller, F. 2004. Somatotopic Representation of Action Words in Human Motor and Premotor Cortex. Neuron, 41, 301-7.

Growing evidence cerebellum involved in language

An imaging study of children with selective problems in short term phonological memory and others diagnosed with specific language impairment (and matched controls) found that those with selective STPM deficits and those with SLI had less gray matter in both sides of the cerebellum compared to the children in the control groups. This supports growing evidence that the cerebellum, an area of the brain once thought to be involved only in the control of movement, also plays a role in processing speech and language.

http://www.eurekalert.org/pub_releases/2003-11/sfn-ssb111103.php

Gender differences in neural networks underlying beginning reading

A recent study uses EEG readings to investigate gender differences in the emerging connectivity of neural networks associated with phonological processing, verbal fluency, higher-level thinking and word retrieval (skills needed for beginning reading), in preschoolers. The study confirms different patterns of growth in building connections between boys and girls. These differences point to the different advantages each gender brings to learning to read. Boys favor vocabulary sub-skills needed for comprehension while girls favor fluency and phonic sub-skills needed for the mechanics of reading.

Hanlon, H. 2001. Gender Differences Observed in Preschoolers’ Emerging Neural Networks. Paper presented at Genomes and Hormones: An Integrative Approach to Gender Differences in Physiology, an American Physiological Society (APS) conference held October 17-20 in Pittsburgh.

http://www.eurekalert.org/pub_releases/2001-10/aps-gad101701.php

Gathercole, S.E., Service, E., Hitch, G.J., Adams, A. & Martin, A.J. 1999. Phonological short-term memory and vocabulary development: furtherevidence on the nature of the relationship. Applied Cognitive Psychology, 13, 65-77.

Finding: The ability of a child to repeat back unfamiliar words is constrained by the capacity of their working memory rather than their ability to articulate the words. The constraining effect of working memory capacity on the ability to learn new words continues into adolescence.

The effect of phonological short-term (working) memory and vocabulary knowledge was explored in two experiments (see Gathercole et al 1994 for a discussion of this effect). In the first experiment, four-year-olds were given various working memory tests (nonword repetition; digit span; nonword recognition). The correlation between working memory capacity and vocabulary knowledge was as strong for the serial recognition task as for the recall-based tests, supporting the view that it is working memory capacity rather than speech output skills which constrain word learning. In the next experiment, the same association betweenmemory capacity and vocabulary knowledge was found to be strong in teenagers, indicating that these working memory constraints remain significant throughout childhood.

Crain-Thoreson, C. 1996. Phonemic Processes in Children's Listening and Reading Comprehension. Applied Cognitive Psychology, 10, 383-401.

Finding: Rhyme appears to be more confusing than other phonemic similarities and can affect how clearly the child remembers what a heard story was about. However recall of verbatim details does not appear to be affected, and the susceptibility of a child to phonemic confusion doesn't appear to affect their reading skill.

Kindergarten and second-grade children were told phonemically confusing stories and second-graders were given phonemically confusing stories to read. It was found that rhymes were more consistently confusing than alliteratives in both the listening and readingtasks at both grade levels. This suggests not only that rhyme is inherently moreconfusing than alliteration, but that similar information is being activated when children listen and when they readsilently.

Both kindergarten and second-grade children showed phonemic confusion in their remembering of the gist of the stories that they heard, but prereaders were less likely than readers to show signs of phonemic confusion in their verbatim recall. However, children's sensitivity to phonemic information did not appear to affect their reading skill.

Gathercole, S.E., Willis, C.S., Baddeley, A.D. & Emslie, H. 1994. The Children's test of Nonword Repetition: a test of phonological working memory. Memory, 2, 103-27.

Finding: The ability of a child to repeat back unfamiliar words is constrained by the capacity of their working memory, and affects their ability to learn new words, as well as the ability to comprehend what they hear or read.

The Children's test of Nonword Repetition (CNRep) involves the child hearing a single novel word-like item, such as "barrazon", and being required to immediately repeat it back. This occurs for 40 such items. Performance on this test is highly correlated with conventional tests of phonological working memory, and it appears that the ability to repeat back unfamiliar words is affected by the capacity of this aspect (the phonological loop) of working memory.

The test is particularly appropriate for young children, as it is a familiar task (young children are of course constantly coming up against unfamiliar words and often try to repeat them) and they usually readily understand what to do.

A number of studies have consistently found poor CNRep scores in children who are poor readers, and very low scores in children who are reading-impaired (such as dyslexics). Adults with various language processing disorders also perform poorly on this test.

Working memory capacity (which varies among individuals) affects many aspects of comprehension and recall. Among normal adults, working memory constraints usually only affect comprehension of particularly long and grammatically complex sentences. Among children, the ability to repeat back unfamiliar words affects both language comprehension and the learning of new words.

tags study: 

Mathematics

Also see

Dyscalculia

Older news items (pre-2010) brought over from the old website

Factors influencing math performance

Early math skills best predict school success

A review of data from six studies of close to 36,000 preschoolers has revealed that the single most important factor in predicting later academic achievement is that children begin school with a mastery of early math and literacy concepts. This was true even if they have various social and emotional problems. Children's attention-related skills also mattered. The very strongest predictor of future academic success was beginning school with a knowledge of numbers, number order and other rudimentary math concepts. The study controlled for IQ, family income, gender, temperament, type of previous educational experience, and whether children came from single or two parent families. Mastery of early math skills predicted future reading achievement as well as future math achievement. The opposite was not true.

Duncan, G.J. et al. 2007. School Readiness and Later Achievement. Developmental Psychology, 43 (6), 1428–1446. 

http://www.sciencedaily.com/releases/2007/11/071112182442.htm

Gesturing helps grade-schoolers solve math problems

Two studies of children in late third and early fourth grade, who made mistakes in solving math problems, have found that children told to move their hands when explaining how they’d solve a problem were four times as likely as kids given no instructions to manually express correct new ways to solve problems. Even though they didn’t give the right answer, their gestures revealed an implicit knowledge of mathematical ideas, and the second study showed that gesturing set them up to benefit from subsequent instruction. The findings extend previous research that body movement not only helps people to express things they may not be able to verbally articulate, but actually to think better.

Broaders, S.C., Cook, S.W., Mitchell, Z. & Goldin-Meadow, S. 2007. Making Children Gesture Brings Out Implicit Knowledge and Leads to Learning. Journal of Experimental Psychology: General, 136 (4).

http://www.eurekalert.org/pub_releases/2007-11/apa-ghg102907.php

Young children can add and subtract without arithmetic

We knew infants can judge simple mathematical relationships, such as being able to tell when there are more objects in one group compared to another. Now a new study shows that children can apply that ability to Arabic numerals after learning to count but before they learned to add and subtract. When given such problems as, "Sarah has 15 candies and she gets 19 more; John has 51 candies. Who has more?", five- and six-year-old children answered correctly 64—73% of the time. The research suggests ways to improve children’s engagement with formal arithmetic.

Gilmore, C.K., McCarthy, S.E. & Spelke, E.S. 2007. Symbolic arithmetic knowledge without instruction. Nature, 447, 589-591.

Executive function as important as IQ for math success

A study of 141 preschoolers from low-income homes has found that a child whose IQ and executive functioning were both above average was three times more likely to succeed in math than a child who simply had a high IQ. The parts of executive function that appear to be particularly linked to math ability in preschoolers are working memory and inhibitory control. In this context, working memory may be thought of as the ability to keep information or rules in mind while performing mental tasks. Inhibitory control is the ability to halt automatic impulses and focus on the problem at hand. Inhibitory control was also important for reading ability. The finding offers the hope that training to improve executive function will improve academic performance

Blair, C. & Razza, R.P. 2007. Relating Effortful Control, Executive Function, and False Belief Understanding to Emerging Math and Literacy Ability in Kindergarten. Child Development, 78 (2), 647–663.

Language affects how math is done?

A comparison of activity in the brains of Chinese and English participants doing simple arithmetic using Arabic numbers has found that, although both groups utilised the inferior parietal cortex (an area connected to quantity representation and reading), English speakers displayed more activity in the language processing area of the brain, while Chinese speakers used the area of the brain that deals with processing visual information. There was no significant difference in the reaction time and accuracy of the Chinese and English-speaking volunteers. However, an earlier study comparing Canadian and Chinese students found that the latter were better at complex maths. The findings suggest that our native language, or different teaching methods, may influence the way we solve equations.

Tang, Y. et al. 2006. Arithmetic processing in the brain shaped by cultures. Proc. Natl. Acad. Sci. USA, Published online before print June 30, 2006.

 http://www.newscientist.com/article/dn9422?DCMP=NLC-nletter&nsref=dn9422

Preschool storytelling ability linked to later mathematical ability

A new study suggests that preschool children's early storytelling abilities are predictive of their mathematical ability two years later. In the study, three-and four-year-old children were shown a book that contained only pictures and were asked to tell the story to a puppet. Their abilities were measured in a variety of ways. Two years later, the children were given a number of tests of academic achievement, including a test of mathematical achievement. It was found was that those children who scored highly on the mathematics test had also scored highly on certain measures of their storytelling ability two years earlier. "Most strongly predictive of children's mathematical performance was their ability to relate all the different events in the story, to shift clearly from the actions of one character to another, and to adopt the perspective of different characters and talk about what they were feeling or thinking." This study suggests that building strong storytelling skills early in the preschool years may be helpful in preparing children for learning mathematics when they enter school.

O’Neill, D.K. et al. 2004. Preschool children's narratives and performance on the Peabody Individualized Achievement Test - Revised: Evidence of a relation between early narrative and later mathematical ability. First Language, 24 (2), 149-184.

http://www.eurekalert.org/pub_releases/2004-07/nsae-url072904.php

Factors impairing math ability

Gender gap in math is culture-based

Data from the Trends in International Mathematics and Science Study and the Programme for International Student Assessment, representing 493,495 students ages 14-16 from 69 countries, have revealed only very small gender differences overall, but marked variation when nations are compared. For example, there are more girls in the top tier in countries such as Iceland, Thailand, and the United Kingdom–and even in certain U.S. populations, such as Asian-Americans. However, despite overall similarities in math skills, boys felt significantly more confident in their abilities than girls did and were more motivated to do well. Furthermore, although some studies have found more males than females scoring above the 95th or 99th percentile, this gender gap has significantly narrowed over time in the U.S. and is not found among some ethnic groups and in some nations. Greater male variability with respect to mathematics, where it exists, correlates with several measures of gender inequality.

Hyde, J. S., & Mertz, J. E. (2009). Gender, culture, and mathematics performance. Proceedings of the National Academy of Sciences, 106(22), 8801-8807.

Else-Quest, N.M., Hyde, J.S. & Linn, M.C. 2010. Cross-national patterns of gender differences in mathematics: A meta-analysis. Psychological Bulletin, 136(1), 103-127.

http://spectrum.ieee.org/at-work/education/math-quiz-why-do-men-predominate 
http://www.physorg.com/news181915640.html

Iron deficiency may affect maths achievement in children and teens

A U.S. national study of 5,398 children aged 6 to 16 found iron deficiency in 3% of the children overall, and 8.7% of girls aged 12 to 16 (7% without anemia). Average math scores for iron-deficient children with or without anemia were about six points lower than those with normal iron levels. Among adolescent girls, the difference in scores was more than eight points. Previous research has linked iron-deficiency anemia with lower developmental test scores in young children, but there is less information on older children and on iron deficiency without anemia. It is suggested that this finding may help explain why the female superiority in maths at younger ages reverses itself in adolescence.

Halterman, J.S., Kaczorowski, J.M., Aligne, C.A., Auinger, P. & Szilagyi, P.G. 2001. Iron Deficiency and Cognitive Achievement Among School-Aged Children and Adolescents in the United States. Pediatrics, 107 (6), 1381-1386.

Math Anxiety

Positive stereotypes can offset negative stereotype effect

A number of studies have now shown that negative stereotypes can impair cognitive performance, mainly through adding to working memory load. A new study has now shown that this effect can be mitigated by the activation of a positive stereotype. The research takes advantage of the fact that we all belong to several social groups. In this case, the relevant groups were ‘female’ and ‘college student’. As usual, when (subtly) reminded of negative stereotypes for women and math, women performed worse. The interesting thing was that this didn’t happen if women were also made aware that college students performed better at math than non-college students. Moreover, this was reflected in working memory capacity. It seems that, when both a positive and a negative stereotype are offered, people will tend to choose the positive stereotype, and the effects of this will cancel out the negative stereotype. It’s also worth noting how easily these stereotypes are activated: effects could be manipulated simply by subtly changing demographic questions asked before the test (and it is not uncommon that test-takers are first required to answer some demographic questions).

Rydell, R.J., McConnell, A.R. & Beilock, S.L. 2009. Multiple social identities and stereotype threat: Imbalance, accessibility, and working memory. Journal of Personality and Social Psychology, 96(5), 949-966.

http://www.eurekalert.org/pub_releases/2009-05/iu-pob050109.php

Stereotype-induced math anxiety robs women's working memory

Another study finds evidence that being told men are better at mathematics undermines women's math performance, and extends it by demonstrating that the anxiety induced by the stereotype mainly reduced the verbal part of working memory, and that this carried over to subsequent (non-math-related) tasks. The accuracy of women exposed to the stereotype was reduced from nearly 90% in a pretest to about 80% after being told men do better in mathematics.

Beilock, S.L., Rydell, R.J. & McConnell, A.R. 2007. Stereotype threat and working memory: Mechanisms, alleviation, and spillover. Journal of Experimental Psychology: General, 136(2), 256-276.

http://www.physorg.com/news99239898.html
http://www.eurekalert.org/pub_releases/2007-05/uoc-sma052107.php

Implicit stereotypes and gender identification may affect female math performance

Relatedly, another study has come out showing that women enrolled in an introductory calculus course who possessed strong implicit gender stereotypes, (for example, automatically associating "male" more than "female" with math ability and math professions) and were likely to identify themselves as feminine, performed worse relative to their female counterparts who did not possess such stereotypes and who were less likely to identify with traditionally female characteristics. Strikingly, a majority of the women participating in the study explicitly expressed disagreement with the idea that men have superior math ability, suggesting that even when consciously disavowing stereotypes, female math students are still susceptible to negative perceptions of their ability.

Kiefer, A.K., & Sekaquaptewa, D. 2007. Implicit stereotypes, gender identification, and math performance: a prospective study of female math students. Psychological Science, 18(1), 13-18.

http://www.eurekalert.org/pub_releases/2007-01/afps-isa012407.php

Women's math performance affected by theories on sex differences

In a salutary reminder to all researchers into gender and race differences, researchers found that women who received a genetic explanation for female underachievement in math or were reminded of the stereotype about female math underachievement, performed more poorly on math tests than those who received an experiential explanation (such as math teachers treating boys preferentially during the first years of math education) or were led to believe there are no sex differences in math.

Dar-Nimrod, I. & Heine, S.J. 2006. Exposure to Scientific Theories Affects Women's Math Performance. Science, 314 (5798), 435.

http://www.eurekalert.org/pub_releases/2006-10/uobc-wmp101306.php

Anxiety over maths blocks learning

The so-called "maths block" is notorious - why do we have such a term? Do we talk about a "geography block", or a "physics block"? But we do talk of a reading block. Perhaps the reason for both is the same.
The amount of information you can work with at one time has clear limits, defined by your working memory capacity. When we are anxious, part of our working memory is taken up with our awareness of these fears and worries, leaving less capacity available for processing (which is why students who are very anxious during exams usually perform well below their capabilities). Processes such as reading and working with numbers are very sensitive to working memory capacity because they place such demands on it.
A recently reported study by Mark H. Ashcraft and Elizabeth P. Kirk, both psychologists at Cleveland (Ohio) State University, provides the first solid evidence that, indeed, math-anxious people have working memory problems as they do maths.

Ashcraft, M. H., & Kirk, E. P. (2001). The relationships among working memory, math anxiety, and performance. Journal of Experimental Psychology: General, 130(2), 224–237. doi:10.1037/0096-3445.130.2.224

Neural substrate of mathematics

Where math takes place normally and in children with fetal alcohol spectrum disorder

An imaging study involving 21 children with fetal alcohol spectrum disorder confirms the importance of the left parietal area for mathematical tasks. Children with FASD are particularly impaired in mathematical ability. Brain activity patterns also revealed that the involvement of regions in the left cerebellum and the brainstem in math processing may be specific to children with FASD.

Lebel, C., Rasmussen, C., Wyper, K., Andrew, G., & Beaulieu, C. (2009). Brain Microstructure Is Related to Math Ability in Children With Fetal Alcohol Spectrum Disorder. Alcoholism: Clinical and Experimental Research, 9999(9999). doi: 10.1111/j.1530-0277.2009.01097.x.

http://www.eurekalert.org/pub_releases/2009-11/ace-ema111209.php

Are language and math processed separately by the brain?

Challenging the view that mathematics and language use common cognitive resources, a recent study provides support for the view that the functions of math and language are separate in the human brain. The study involved three men with severe agrammatic aphasia, which means they're unable to understand or form sentences due to brain damage. They didn't understand a reversible sentence - for example, the difference between 'John kissed Kate' and 'Kate kissed John', but they were able to understand that 5 - 2 is different from 2 – 5 (but not when it was expressed in words: two minus five). The researcher takes the results as a demonstration that we can have cognition without language, however, because the men were all normal until they sustained brain damage, it doesn’t answer the question of whether sophisticated cognition could arise without language.

Varley, R.A., Klessinger, N.J.C., Romanowski, C.A.J. & Siegal, M. 2005. Agrammatic but numerate. Proceedings of the National Academy of Sciences, 102 (9), 3519-3524.

http://education.guardian.co.uk/egweekly/story/0,,1427167,00.html
http://news.bbc.co.uk/1/hi/sci/tech/4265763.stm
http://www.nature.com/news/2005/050214/full/050214-3.html

tags study: 

Expertise

Older news items (pre-2010) brought over from the old website

Developing expertise

How what we like defines what we know

How we categorize items is crucial to both how we perceive them and how well we remember them. Expertise in a subject is a well-established factor in categorization — experts create more specific categories. Because experts usually enjoy their areas of expertise, and because time spent on a subject should result in finer categorization, we would expect positive feelings towards an item to result in more specific categories. However, research has found that positive feelings usually result in more global processing. A new study has found that preference does indeed result in finer categorization and, more surprisingly, that this is independent of expertise. It seems that preference itself activates focused thinking that directly targets the preferred object, enabling more detailed perception and finer categorization.

Smallman, R. & Roese, N.J. 2008. Preference Invites Categorization. Psychological Science, 19 (12).

http://www.physorg.com/news152203095.html

Practice makes an expert

A comparison of expert video game players and non-players has found that gamers showed a 20% reduction in response times on a visual search test (meaning that, on average, gamers were some 100 milliseconds faster than non-gamers). Analysis showed that expert game players did not show differences in normal visual search patterns; they had simply become faster through practice.

Castel, A.D., Pratt, J. & Drummond, E. 2005. The effects of action video game experience on the time course of inhibition of return and the efficiency of visual search. Acta Psychologica, 119 (2), 217-230.

http://www.eurekalert.org/pub_releases/2005-06/wuis-gbn060905.php

First steps in developing expertise

Learning to play a musical instrument involves two quite different sense media – sound and movement. Recent imaging studies have shown that professional musicians have highly developed links between these different perceptions, such that sounds activate areas of the brain that process movement, and movement such as silently tapping out musical phrases, evokes brain activity in areas involved in hearing. A new study now demonstrates that this sort of cross-linking occurs within twenty minutes of starting to learn an instrument (in this case, a piano). Novices were given ten 20 minute sessions, during which they heard musical phrases and learned to play them back on a digital piano. Those in the "map" group used pianos where five neighboring keys had appropriate notes assigned to them. The "no-map" group used pianos where the assignment of notes to the five keys was randomly shuffled after each training trial. Changes in brain activity were evident in all participants after one session, but after five sessions, the activity patterns were significantly different between the two groups. In the “map” group, motor areas of the brain were active when the participants listened to music, but this was not the case with those in the “no-map” group. The anterior region of the right hemisphere — an area previously implicated in the perception of melodic and harmonic pitch sequences — was also more active in the "map" group, suggesting it may be the area where the mental map representing the link between a note and a piano key is established.

Bangert, M. & Altenmüller, E.O. 2003. Mapping perception to action in piano practice: a longitudinal DC-EEG study. BMC Neuroscience, 4, 26.

Practicing skills in concentrated blocks not the most efficient way

While practicing several different skills in separate, concentrated blocks leads to better performance during practice, it appears that this approach is not the best method of learning for long-term retention. The temporary improvement in performance that results from blocked practice hinders learning because it allows people to overestimate how well they have learned a skill. For long-term retention, it appears that contextual-interference practice (practicing skills that are mixed with other tasks) results in better learning. This may be because such practice requires people to repeatedly retrieve the motor program corresponding to each task (repeated retrieval is a major factor in making stored memories easier to access). Such practice also requires the person to differentiate the skills in terms of their similarities and differences, which may be assumed to result in a better mental conceptualization of those skills. The fact that blocked practice leads to better short-term performance but poorer long-term learning "has great potential to fool teachers, trainers and instructors as well as students and trainees themselves."

Simon, D.A. & Bjork, R.A. 2001. Metacognition in Motor Learning. Journal of Experimental Psychology: Learning, Memory and Cognition, 27 (4).

About expertise

Tone language translates to perfect pitch

The first large-scale, direct-test study to be conducted on perfect pitch has found that native tone language speakers are almost nine times more likely to have the ability. The study involved two populations of music students: a group of 88 first-year students enrolled at the Central Conservatory of Music in Beijing, China, all of whom spoke Mandarin, and a group of 115 first-years at the Eastman School of Music in Rochester, New York, none of whom spoke a tone language. In both groups, the earlier an individual began music lessons, the more likely he or she was to have perfect pitch. For students who had begun musical training between ages 4 and 5, approximately 60% of the Chinese speakers tested as having perfect pitch, while only about 14% of the U.S. nontone language speakers did. For those who had begun training between 6 and 7, approximately 55% of the Chinese and 6% of the U.S. met the criterion. And for those beginning between 8 and 9, the figures were 42% of the Chinese and zero of the U.S. group. Perfect pitch is extremely rare in the U.S. and Europe, with an estimated prevalence in the general population of less than one in 10,000.

Results were presented November 17 at the meeting of the Acoustical Society of America in San Diego.
The study, with graphic figures of the results and sound files of the test, is available at http://www.aip.org/148th/deutsch.html.

http://www.eurekalert.org/pub_releases/2004-11/uoc--tlt110804.php

Patterns of brain activity differ with musical training, not cultural familarity

Unlike language, which elicits different activity patterns in the brain depending on whether it is a familiar or unfamiliar language, a new imaging study has found that music of another culture produces no differences in brain activity compared to music from your own culture. The study compared responses to Western and Cantonese music, and used 6 professionally trained American musicians and 6 people with little musical training. The study did however find that 30-second excerpts in the familiar style of music were more easily remembered, and also, that training affected the pattern of brain activity.

Morrison, S.J., Demorest, S.M., Aylward, E.H., Cramer, S.C. & Maravilla, K.R. 2003. FMRI investigation of cross-cultural music comprehension, NeuroImage, 20 (1), 378-384.

http://www.eurekalert.org/pub_releases/2003-10/uow-pob101403.php

Another link between music and language

New research augments earlier findings concerning the amount and distribution of gray matter in the brains of professional musicians. It now appears that musicians also have an increased volume of grey matter in the Broca's area, an area of the brain involved in the production of language. A critical factor appears to be the number of years devoted to musical training - at least for musicians under the age of 50. The research supports recent suggestions that musicians process music like an additional language.

Sluming, V., Barrick, T., Howard, M., Cezayirli, E., Mayes, A. & Roberts, N. 2002. Voxel-Based Morphometry Reveals Increased Gray Matter Density in Broca's Area in Male Symphony Orchestra Musicians, NeuroImage, 17(3), 1613-1622.

More grey matter in the auditory cortex of musicians' brains

A German study has found that a region of the auditory cortex was more active in professional musicians listening to tones of varying frequencies compared to amateur musicians and considerably more active than that of non-musicians. More surprisingly, there was a very significant difference in the amount of "grey matter" in the part of the auditory cortex called the Heschl's gyrus. The structure contained 536 to 983 cubic millimetres of grey matter in professionals, 189 to 798 cubic millimetres in amateurs, and 172 to 450 cubic millimetres in non-musicians.

Schneider, P., Scherg, M., Dosch, H.G., Specht, H.J., Gutschalk, A. & Rupp, A. 2002. Morphology of Heschl's gyrus reflects enhanced activation in the auditory cortex of musicians. Nature Neuroscience,5, 688 - 694.

http://news.bbc.co.uk/hi/english/sci/tech/newsid_2044000/2044646.stm

Another interesting facet to expert memory: how professional musicians process music

A magnetic-resonance study has found that professional musicians use their left brain more than other people when listening to music. In particular, while the planum temporale was activated in all subjects listening to music (a Bach piece), in non-musicians it was the right planum temporale that was most active, while in musicians the left side dominated. The left planum temporale is thought to control language processing. It may be that musicians process music as a language.This left-hand brain activity was most pronounced in people who had started musical training at an early age, as well as in those with absolute or 'perfect' pitch (suggesting that musical traits such as absolute pitch are the result of childhood training rather than genetic predisposition).

Ohnishi, T., Matsuda, H., Asada, T., Aruga, M., Hirakata, M., Nishikawa, M., Katoh, A. & Imabayashi, E. 2001. Functional Anatomy of Musical Perception in Musicians. Cerebral Cortex, 11, 754-760.

http://www.nature.com/nsu/010816/010816-4.html

Chess experts and chess amateurs use different parts of their brain when they play

Professor Thomas Elbert, Ognjen Amidzic and colleagues at the University of Constance, Germany, used a new magnetic imaging technique to study chess players' brains in action. They found that mid-match activity in grandmasters' brains is mainly in regions thought to be involved in long-term memory - the frontal and parietal cortices. Amateur chess players relied more on the medial temporal lobe, which helps to encode new information, suggesting that they analyse situations afresh. The finding supports the idea that expertise depends on stored memory chunks that are called up when needed.

Amidzic, O., Riehle, H.J., Fehr, T., Wienbruch, C. & Elbert, T. 2001. Pattern of focal gamma bursts in chess players. Nature, 412, 603.

http://www.nature.com/nsu/010809/010809-13.html
http://news.bbc.co.uk/hi/english/sci/tech/newsid_1480000/1480365.stm

Significant brain differences between professional musicians trained at an early age and non-musicians

Research has revealed significant differences in the gray matter distribution between professional musicians trained at an early age and non-musicians. It is most likely that this is due to intensive musical training at an early age, although it is also possible that the musicians were born with these differences, which led them to pursue musical training.

Schlaug, G. & Christian, G. Paper presented May 7 at the American Academy of Neurology's 53rd Annual Meeting in Philadelphia, PA.

http://www.eurekalert.org/pub_releases/2001-05/AAoN-Mtdc-0705101.php

tags study: 

Self-regulation

Older news items (pre-2010) brought over from the old website

Pointers for better learning

One of the crucial aspects to learning efficiently is being able to accurately assess your own learning process. Research has shown that in general people are not very accurate at judging how well they have learned complex materials. A review of recent research into how to improve judgment accuracy has concluded that rereading or summarizing text can help, as well as techniques that focus people’s attention on just the most important details of a text, such as trying to recall the key ideas from memory.

Dunlosky, J. & Lipko, A.R. 2007. Metacomprehension: A Brief History and How to Improve Its Accuracy. Current Directions in Psychological Science, 16 (4), 228–232.

http://www.eurekalert.org/pub_releases/2007-08/afps-rpt082307.php
http://www.sciencedaily.com/releases/2007/08/070823142827.htm

tags study: 

Creativity

Older news items (pre-2010) brought over from the old website

(these were covered in my blog of the time, so don't have references, I'm afraid)

Emotional effect of video games can help creativity

As part of the search for ways to use video games educationally, a study of around 100 students has found that those who scored highly on a creativity test after playing the game Dance Dance Revolution fell into two groups: those who had a high degree of emotional arousal (measured by skin conductance) after playing and a positive mood, and (this is the weird part), those in the completely opposite camp — low arousal and negative mood.
The explanation for these somewhat paradoxical findings rests on there being two aspects to creativity — diffused attention (presumably where the happy people score), and a certain analytical ability (which is where the sad people are presumed to score).
It still seems weird, but the take-home point I guess is that being angry (high arousal, negative mood) is not conducive to creativity, and neither is medium arousal. On the other hand, I’m wondering about individual differences. I think some people probably are creative when angry, and I’d like to know about personality characteristics that might have distinguished the students who were creative when happy from those who were creative when sad. Still, interesting study.

http://www.physorg.com/news130862416.html

Brain Activity Differs For Creative And Noncreative Thinkers

There’s a long-standing debate regarding whether "creative thought" and "noncreative thought" are different. Now an imaging study has revealed fascinating differences in brain activity, even at rest, in people who tend to solve problems with a sudden creative insight -- an "Aha! Moment" – compared to people who tend to solve problems more methodically.

For a start, creative solvers showed more activity in several regions of the right hemisphere — this area is thought to play a special role in solving problems creatively, likely due to right-hemisphere involvement in the processing of loose or "remote" associations between the elements of a problem. The finding that this pattern is evident even when the people aren’t thinking about a problem suggests that even the spontaneous thought of creative individuals contains more remote associations.

Creative and methodical solvers also showed different activity in areas of the brain that process visual information. It looks like creative types have more diffuse attention, perhaps allowing them to broadly sample the environment for experiences that can trigger remote associations.

On the other hand, the more focused attention of methodical solvers reduces their distractibility, allowing them to effectively solve problems for which the solution strategy is already known.

http://www.sciencedaily.com/releases/2007/10/071027102409.htm

Dissecting the artist's brain

An art historian and a neuroscientist have joined together to create a new academic discipline -- neuroarthistory – which uses brain scanning techniques to answer questions about what is, and has been, going on in artists’ brains. For example, they suggest that Florentine painters made more use of line and Venetian painters more of color, because passive exposure to different natural and manmade environments caused the formation of different visual preferences.

http://www.sciencedaily.com/releases/2006/09/060906091616.htm

The "Aha!" experience

An intriguing new study into the "Aha!" experience reveals that the distinct patterns of brain activity leading to such moments of insight begin much earlier than the moment itself. Prior to such moments, the pattern of brain activity suggests that the person is focusing attention inwardly, is ready to switch to new trains of thought, and perhaps is actively silencing irrelevant thoughts. This study may eventually lead to an understanding of how to put people in the optimal "frame of mind" to deal with particular types of problems.

http://www.eurekalert.org/pub_releases/2006-04/afps-aft040506.php

Creativity and the "schizotypal" personality

A study of people who're "a bit weird" claims that these "schizotypal" personalities are more creative than either normal or fully schizophrenic people, and that this is due to greater use of the right side of the brain. The researchers suggest such people can make associations faster because they're better at accessing both sides of the brain, and notes that a disproportionate number of schizophrenics and schizotypes are ambidextrous.

http://www.world-science.net/othernews/050906_weirdfrm.htm

Principles for fostering creativity in the workplace

For the last 8 years, Teresa Amabile, head of the Entrepreneurial Management Unit at Harvard Business School, has been collecting daily journal entries from 238 people working on creative projects in seven companies in the consumer products, high-tech, and chemical industries, and from this database of "creativity in the wild" she has come up with 6 operating principles for fostering creativity in the workplace.

http://www.fastcompany.com/magazine/89/creativity.html

Sleep may stimulate creative thinking

You can catch an interview on BBC radio with a researcher of a recent study showing sleep may stimulate creative thinking (the sleep bit is the first 8 minutes or so of the program).

http://www.bbc.co.uk/radio4/science/rams/leadingedge_20040122.ram

Great scientific discoveries tend to be made by young scientists – but only in particular areas

A discussion list to which I belong has recently been discussing the phenomenon? myth?? that great scientific discoveries (in particular areas) tend to be made by young scientists. The famous physicist Murray Gell-Mann, commenting on this, apparently remarked that, in his own field of theoretical particle physics, this was true because the field was so new; in the life sciences, so much was known, that " It took years of study and rote memorization for an aspiring scientist to master what was already known. By the time a researcher was ready to make an original contribution, he was probably well advanced in his career."

This illustrates an important principle in memory and aging that tends to be overlooked. Yes, younger brains are faster, probably more flexible, with perhaps more working memory capacity - but older brains can make up for that, with the fruits of experience. WM capacity is one example of that. Say, at 25, you have a capacity of 8 "units"; say at 75 that has dropped to 6 (this is a simplistic way of representing a complex situation, but I'm trying to make a point here). A "unit" can be a single datum, such as "4" or a complex chunk, such as "The quality of mercy is not strained, it droppeth as the gentle rain of heaven upon the place beneath". The flexibility of the "unit" says everything about the value of strategies - memory strategies can turn complex and lengthy conglomerations of information into single "chunks" / "units". An experienced 75 year old, with expertise in a particular field, can have developed very complex chunks and thus, despite the drop in capacity, easily out-think a 25 year old.

(By the way, if you want to read the classic paper on WM capacity, by George Miller on the "Magical Number Seven", you can read it here.)

tags strategies: 

Pages

Subscribe to RSS - Study