Study

Study & Education

Dyslexia

For information on helping those with dyslexia, see Dyslexia therapy

Older news items (pre-2010) brought over from the old website

Unraveling the roots of dyslexia

There is some evidence that dyslexia is distinguished by a basic deficit in phonological processing, characterized by difficulties in segmenting spoken words into their minimally discernable speech segments (speech sounds, or phonemes). A new study investigating brain activity of dyslexics and normal adult readers when presented with letters, speech sounds, or a matching or non-matching combination of the two, has revealed that dyslexic adults showed lower activation of the superior temporal cortex when needing to integrate letter and speech sounds. The findings point to reading failure being caused by a neural deficit in integrating letters with their speech sounds.

Blau, V. et al. 2009. Reduced Neural Integration of Letters and Speech Sounds Links Phonological and Reading Deficits in Adult Dyslexia. Current Biology, 19 (6), 503-508.

http://www.eurekalert.org/pub_releases/2009-03/cp-utr030509.php

Chinese and English dyslexias stem from different brain abnormalities.

Dyslexia involves impairment in connecting the sight and sound of a word. In English, this is commonly seen in transpositions of letters, while in Chinese, the problem can affect how a person converts a symbol into both sound and meaning. Following an earlier study in which the brain areas involved in dyslexia were found to be different for English and Chinese readers, a new technique has confirmed and clarified the results. Chinese children with dyslexia had a significantly smaller left middle frontal gyrus than did Chinese children without the disorder, even though both groups had the same overall volume of gray matter. Intriguingly, this area is not associated with symbol recognition, but with working memory. Earlier research has found English-speaking dyslexics have less gray matter in the left parietal region. The findings also suggest that dyslexics in one language will probably not be dyslexic in the other.

[865] Siok, W T., Niu Z., Jin Z., Perfetti C. A., & Tan L H.
(2008).  A structural–functional basis for dyslexia in the cortex of Chinese readers.
Proceedings of the National Academy of Sciences. 105(14), 5561 - 5566.

http://www.nature.com/news/2008/080407/full/news.2008.739.html
http://sciencenow.sciencemag.org/cgi/content/full/2008/408/1?etoc

New evidence for the cause of dyslexia

A new study casts new light on the cause of dyslexia. Recent research has tended to focus on the magnocellular (M) pathway, one of two visual pathways in the brain that processes motion and brightness. The other visual channel, the parvocellular (P) pathway, processes detail and color. Although some studies have implicated an impaired M channel, showing that dyslexic children have trouble seeing rapidly changing or moving stimuli, results have been inconsistent. A new study suggests that the problem is rather a more general problem in basic sensory perception — an inability to shut out “noise”, that is, the sounds and patterns surrounding the target information.

[462] Sperling, A. J., Lu Z-L., Manis F. R., & Seidenberg M. S.
(2005).  Deficits in perceptual noise exclusion in developmental dyslexia.
Nat Neurosci. 8(7), 862 - 863.

http://www.eurekalert.org/pub_releases/2005-05/uow-sso052505.php

Dyslexia doesn't have a universal biological cause

While most of the latest research focuses on the biological causes of dyslexia, a new study reveals that the disorder affects the brains of Chinese and English speakers differently, suggesting that the neural basis of reading differs depending on the nature of the writing system. The findings have enormous implications for helping impaired readers in China, where 2% to 7% of children are dyslexic. The study also highlights the importance of paying attention to differences in languages, even languages as similar as English and Italian. It has been shown that the degree of impairment when reading can differ depending on the language.

[1058] Siok, W T., Perfetti C. A., Jin Z., & Tan L H.
(2004).  Biological abnormality of impaired reading is constrained by culture.
Nature. 431(7004), 71 - 76.

http://msnbc.msn.com/id/5888011/

Dyslexics have less gray matter in the brain's language centers

A new imaging study involving people with a family history of dyslexia confirms earlier research suggesting dyslexics have a significant reduction of gray matter in centers associated with language processing. The study lends credence to earlier studies that suggested intensive reading therapy activates parts of the brain needed for decoding words.

[1446] Brambati, S. M., Termine C., Ruffino M., Stella G., Fazio F., Cappa S. F., et al.
(2004).  Regional reductions of gray matter volume in familial dyslexia.
Neurology. 63(4), 742 - 745.

Brain development and puberty may be key factors in learning disorders

New research suggests that the brains of children with learning problems not only appear to develop more slowly than those of their unaffected counterparts but also actually may stop developing around the time of puberty's onset. In the study, children with impairments started out about three years behind, but their rate of improvement was very similar to that of the children without impairments — until around 10 years, when further development in the children with learning problems stopped. The researchers suggest that delayed brain development and its interaction with puberty may be key factors contributing to language-based learning disabilities such as dyslexia. This hypothesis suggests a completely new approach to the study of learning problems. It also points to the importance of early intervention.

[216] Wright, B. A., & Zecker S. G.
(2004).  Learning problems, delayed development, and puberty.
Proceedings of the National Academy of Sciences of the United States of America. 101(26), 9942 - 9946.

http://www.eurekalert.org/pub_releases/2004-06/nu-bda061604.php

Sensory processing different in people with dyslexia

An imaging study of dyslexics has found that dyslexic readers appear to process auditory and visual sensory cues differently than do normal readers. In the study 30 dyslexic readers and 30 normal readers performed three matching tasks — an auditory task, a visual task and a multisensory task — involving consonant-vowel pairs. During the auditory matching task the dyslexic readers showed increased activity in the visual pathway of the brain, while that same region deactivated in the normal readers. The dyslexic readers' increased activation patterns in the visual pathway corresponded to poorer performance on the matching task.

Burdette, J.H., Laurienti, P.J., Flowers, L., Kraft, R., Maldjian, J. & Wood, F.B. 2003. Report presented at the 89th Scientific Assembly and Annual Meeting of the Radiological Society of North America (RSNA).

http://www.eurekalert.org/pub_releases/2003-12/rson-fdm112403.php

Imaging study confirms theory of dyslexia

Functional magnetic resonance imaging (fMRI) has confirmed part of an eighty-year-old theory on the neurobiological basis of dyslexia. Dr Orton theorized that normally developing readers learn to suppress the visual images reported by the right hemisphere of the brain because these images potentially interfere with input from the left. The imaging study found that children do in fact "turn off" the right side of the visual parts of the brain as they become accomplished readers, and also demonstrated that different phonological skills relate to activity in different parts of the brain when children read. This observation lends support to the theory that there may be several neurobiological profiles that correspond to different subtypes of dyslexia, each associated with varying deficits in one or more of these different phonological skills.

[304] Turkeltaub, P. E., Gareau L., Flowers L. D., Zeffiro T. A., & Eden G. F.
(2003).  Development of neural mechanisms for reading.
Nat Neurosci. 6(7), 767 - 773.

http://www.eurekalert.org/pub_releases/2003-05/gumc-wor051603.php

tags problems: 

tags study: 

Testing

Older news items (pre-2010) brought over from the old website

The importance of retrieval cues

An imaging study has revealed that it is retrieval cues that trigger activity in the hippocampus, rather than, as often argued, the strength of the memory. The study involved participants learning unrelated word pairs (a process which included making up sentences with the words), then being asked whether various familiar words had been previously seen or not — the words being shown first on their own, and then with their paired cue word. Brain activity for words judged familiar on their own was compared with activity for the same items when shown with context cues. Increased hippocampal activity occurred only with cued recall. Moreover, the amount of activity was not associated with familiarity strength, and recollected items were associated with greater activity relative to highly familiar items.
[1102] Cohn, M., Moscovitch M., Lahat A., & McAndrews M P.
(2009).  Recollection versus strength as the primary determinant of hippocampal engagement at retrieval.
Proceedings of the National Academy of Sciences. 106(52), 22451 - 22455.
http://www.eurekalert.org/pub_releases/2009-12/uot-dik120709.php

Making student self-testing an effective study tool

A series of four experiments with 150 college students using Swahili-English vocabulary words has revealed that repeated retrieval was a very effective learning strategy. However, when subjects were given control over their own learning, they did not attempt retrieval as early or as often as they should to promote the best learning. The findings are thought to reflect a powerful metacognitive illusion that occurs during self-regulated learning — namely, that easy retrieval tends to make students believe they have “learned” it before the material is properly mastered, leading to premature termination of the study practice.
[285] Karpicke, J. D.
(2009).  Metacognitive Control and Strategy Selection: Deciding to Practice Retrieval During Learning.
Journal of Experimental Psychology: General. 138(4), 469 - 486.
http://www.eurekalert.org/pub_releases/2009-12/pu-sse121009.php

Longer high-stakes tests may result in a sense of mental fatigue, but not in lower test scores

A study involving 239 freshman college students who took three different versions of the SAT Reasoning Test, of progressively longer lengths (3.5, 4.5, 5.5 hours), has revealed that although the students reported higher levels of mental fatigue with longer tests, performance was not affected. In fact, the average performance for both the standard and long tests was significantly higher than for the short test. Moreover, the fatigue experienced was less related to the length of the exam (and to the amount of sleep they’d had) than it was to personality traits. Those with higher levels of achievement motivation and competitiveness felt less fatigue, and those with higher levels of neuroticism and anxiety felt more.
[1127] Ackerman, P. L., & Kanfer R.
(2009).  Test length and cognitive fatigue: an empirical examination of effects on performance and test-taker reactions.
Journal of Experimental Psychology. Applied. 15(2), 163 - 181.
Full text available at http://www.apa.org/journals/releases/xap152-ackerman-kanfer.pdf
http://www.eurekalert.org/pub_releases/2009-06/apa-lht052809.php

Why we don't always learn from our mistakes

A study of the tip-of-the-tongue (TOT) phenomenon suggests that most errors are repeated because the very act of making a mistake, despite receiving correction, constitutes the learning of that mistake. The study asked students to retrieve words after being given a definition. If that produced a TOT state, they were randomly assigned to spend either 10 or 30 seconds trying to retrieve the answer before finally being shown it. When tested two days later, it was found that they tended to TOT on the same words as before, and were especially more likely to do so if they had spent a longer time trying to retrieve them The longer time in the error state appears to reinforce that incorrect pattern of brain activation that caused the error.
[225] Warriner, A B., & Humphreys K. R.
(2008).  Learning to fail: reoccurring tip-of-the-tongue states.
Quarterly Journal of Experimental Psychology (2006). 61(4), 535 - 542.
http://www.physorg.com/news126265455.html

Testing strengthens recall whether something's on the test or not

The simple act of taking a test appears to help you remember everything you learned, even if it isn't tested. In a series of three experiments, researchers found undergraduates tested after being given 25 minutes to study a long article about the toucan bird recalled more a day later than those given further information about the toucan in an extra study session, or those who had neither experience. In the second experiment, students were given two articles to read, one of which was tested and one of which was not. Again, the one tested was remembered significantly better a day later. The third experiment revealed that later recall was better the more time the student had spent on answering questions in the first test. This relation was especially pronounced for students with lower performance on the test, and those who were encouraged to guess did significantly better on the second test than students who were discouraged from guessing.
[1188] Chan, J. C. K., McDermott III K. B., & Roediger H. L.
(2006).  Retrieval-Induced Facilitation: Initially Nontested Material Can Benefit From Prior Testing of Related Material.
Journal of Experimental Psychology: General. 135(4), 553 - 571.
http://www.eurekalert.org/pub_releases/2006-11/apa-tsr110606.php

Repeated test-taking better for retention than repeated studying

A study indicates that testing can be a powerful means for improving learning, not just assessing it. The study compared students who studied a prose passage for about five minutes and then took either one or three immediate free-recall tests, receiving no feedback on the accuracy of answers, with students who received no tests, but were allowed another five minutes to restudy the passage each time their counterparts were involved in a testing session. While the study-only group performed better on the test after the last session, they performed worse when tested 2 days later, and dramatically worse after one week. Note that the study-only group had read the passage about 14 times in total, while the repeated testing group had read the passage only 3.4 times in its one-and-only study session. It also appears that students who rely on repeated study alone often come away with a false sense of confidence about their mastery of the material.
[272] Roediger, H. L., & Karpicke J. D.
(2006).  Test-enhanced learning: taking memory tests improves long-term retention.
Psychological Science: A Journal of the American Psychological Society / APS. 17(3), 249 - 255.
http://www.eurekalert.org/pub_releases/2006-03/wuis-rtb030606.php

tags memworks: 

tags study: 

Learning another language

Older news items (pre-2010) brought over from the old website

Literate Arabic speakers have bilingual brains

Research has found that Arabic-speaking students tend to be less proficient in reading than other students are in their native language. Spoken Arabic comes in a variety of dialects and is quite different from the common written Arabic (Modern Standard Arabic - MSA). A new imaging study has now compared brain activity in a priming task among trilinguals fluent in MSA, spoken Arabic and Hebrew. The results revealed that the cognitive process in using MSA was more similar to that employed for Hebrew, and less similar to the cognitive process of using the spoken native language. These results not only help explain why learning to read is more difficult for Arabic speakers, but also suggests that the most effective way of teaching written Arabic is by using techniques usually employed for the instruction of a second language — including exposing children to written Arabic in preschool or kindergarten.

Ibrahim, R. 2009. The cognitive basis of diglossia in Arabic: Evidence from a repetition priming study within and between languages. Journal of Psychology Research and Behavior Management, 2.

http://www.eurekalert.org/pub_releases/2009-11/uoh-wiu110409.php

Relearning a forgotten language is easier for those under 40

A small study involving 7 native English speakers who had learned either Hindi or Zulu as children when living abroad, but now had no memory of the neglected language, found that the three who were under 40 could relearn certain phonemes that are difficult for native English speakers to recognize, but those over 40, like those who had never been exposed to the language in childhood, could not. The amount of experience of exposure in childhood ranged from 4 to 10 years, and it’s especially notable that the 47-year old individual who had 10 years exposure, having become almost fluent, still could not recover the ability to distinguish these difficult sounds. It should also be noted that where the ability was recovered (and recovered almost to native ability), it took about 15-20 training sessions. The findings point to the value of early foreign language learning.

[975] Bowers, J. S., Mattys S. L., & Gage S. H.
(2009).  Preserved implicit knowledge of a forgotten childhood language.
Psychological Science: A Journal of the American Psychological Society / APS. 20(9), 1064 - 1069.

http://www.eurekalert.org/pub_releases/2009-09/afps-uio092409.php

Exposure to two languages carries far-reaching benefits

A new study provides evidence that bilingual speakers find it easier to learn a new language than those who only know one language. The study compared the ability of three groups of native English speakers - English-Mandarin bilinguals, English-Spanish bilinguals and monolinguals - to master words in an invented language that bore no relationship to English, Spanish or Mandarin. The bilingual participants mastered nearly twice the number of words as the monolinguals. The finding adds more support to the value of introducing another language to children at a young age.

[235] Kaushanskaya, M., & Marian V.
(2009).  The bilingual advantage in novel word learning.
Psychonomic Bulletin & Review. 16(4), 705 - 710.

http://www.eurekalert.org/pub_releases/2009-05/nu-ett051909.php

Bilingual babies get a head start on executive functioning

A number of studies have pointed to benefits of being bilingual, but many people still believe that the experience of two languages in infancy may cause confusion and impair their acquisition of language. Now a new study shows that bilingual babies quickly adapt to different learning cues at seven months old compared with babies from single-language households. The study involved families in the Trieste area of Italy, where parents spoke to infants from birth using both Italian and Slovenian mother tongues. When bilingual and monolingual babies were first taught to look at one side of a screen in response to a sound cue (and in anticipation of a visual "reward" image of a puppet), then required to switch sides, it was found that bilingual babies quickly learned to look at the other side, but the monolingual babies never adapted to the change. The findings indicate that bilingualism gives an advantage above the purely linguistic, in executive function, which is consistent with other research indicating bilingual children have improved attention.

[1110] Kovacs, A. M., & Mehler J.
(2009).  Cognitive gains in 7-month-old bilingual infants.
Proceedings of the National Academy of Sciences. 106(16), 6556 - 6560.

http://www.livescience.com/culture/090413-bilingual-smart.html

Anatomical advantage for second language learners

Based on the size of a small brain region called Heschl's Gyrus (HG) in the left hemisphere, researchers found they could predict who would be more successful in learning 18 words in an invented language (those predicted to be "more successful learners" achieved an average of 97% accuracy in identifying the pseudo words, compared to 63% from those deemed "less successful"). The size of the right HG was not important. The finding was surprising, given that this area, the primary region of the auditory cortex, is typically associated with handling the basic building blocks of sound — whether the pitch of a sound is going up or down, where sounds come from, and how loud a sound is — rather than speech per se.

[1147] Wong, P. C. M., Warrier C. M., Penhune V. B., Roy A. K., Sadehh A., Parrish T. B., et al.
(2008).  Volume of Left Heschl's Gyrus and Linguistic Pitch Learning.
Cereb. Cortex. 18(4), 828 - 836.

http://www.physorg.com/news104599345.html

Early music training 'tunes' auditory system

Mandarin is a tonal language, that is, the pitch pattern is as important as the sound of the syllables in determining the meaning of a word. In a small study, a Mandarin word was presented to 20 adults as they watched a movie. All were native English speakers with no knowledge of Mandarin, but half had at least six years of musical instrument training starting before the age of 12, while half had minimal or no musical training. As the subjects watched the movie, the researchers measured the accuracy of their brainstem ability to track three differently pitched "mi" sounds. Those who were musically trained were far better at tracking the three different tones than the non-musicians. The study is the first to provide concrete evidence that playing a musical instrument significantly enhances the brainstem's sensitivity to speech sounds, and supports the view that experience with music at a young age can "fine-tune" the brain's auditory system. The findings are in line with previous studies suggesting that musical experience can improve one's ability to learn tone languages in adulthood, and are also consistent with studies revealing anomalies in brainstem sound encoding in some children with learning disabilities which can be improved by auditory training. The findings are also noteworthy for implicating the brainstem in processing that has been thought of as exclusively involving the cortex.

[667] Wong, P. C. M., Skoe E., Russo N. M., Dees T., & Kraus N.
(2007).  Musical experience shapes human brainstem encoding of linguistic pitch patterns.
Nat Neurosci. 10(4), 420 - 422.

http://www.eurekalert.org/pub_releases/2007-03/nu-rfm031207.php

Why learning a new language may make you forget your old one

The common experience of having difficulty remembering words in your native language when you’ve been immersed in a new language is called first-language attrition, and new research has revealed that it occurs because native language words that might distract us when we are mastering a new language are actively inhibited. The study also found that this inhibition lessened as students became more fluent with the new language, suggesting it principally occurs during the initial stages of second language learning.

[659] Levy, B. J., McVeigh N. D., Marful A., & Anderson M. C.
(2007).  Inhibiting your native language: the role of retrieval-induced forgetting during second-language acquisition.
Psychological Science: A Journal of the American Psychological Society / APS. 18(1), 29 - 34.

http://www.sciencedaily.com/releases/2007/01/070118094015.htm

Bilingualism has protective effect in delaying onset of dementia

An analysis of 184 people with dementia (132 were diagnosed with Alzheimer’s; the remaining 52 with other dementias) found that the mean age of onset of dementia symptoms in the 91 monolingual patients was 71.4 years, while for the 93 bilingual patients it was 75.5 years — a very significant difference. This difference remained even after considering the possible effect of cultural differences, immigration, formal education, employment and even gender as influencers in the results.

[1271] Bialystok, E., Craik F. I. M., & Freedman M.
(2007).  Bilingualism as a protection against the onset of symptoms of dementia.
Neuropsychologia. 45(2), 459 - 464.

http://www.eurekalert.org/pub_releases/2007-01/bcfg-css011107.php

How bilingualism affects the brain

Using a new technique, researchers have shed light on how bilingualism affects the brain. The study involved 20 younger adults of whom half were bilingual in Spanish and English. Similar brain activity, in the left Broca's area and left dorsolateral prefrontal cortex (DLPFC), was found in bilinguals and monolinguals when the task involved only one language. However, when the bilinguals were simultaneously processing each of their two languages and rapidly switching between them, they showed an increase in brain activity in both the left and the right hemisphere Broca's area, with greater activation in the right equivalent of Broca's area and the right DLPFC. The findings support the view that the brains of bilinguals and monolinguals are similar, and both process their individual languages in fundamentally similar ways, but bilinguals engage more of the neurons available for language processing.

The study was presented at the Society for Neuroscience's annual meeting on October 14-18 in Atlanta, Ga.

http://www.eurekalert.org/pub_releases/2006-10/dc-drf101706.php

How does the bilingual brain distinguish between languages?

Studies of bilingual people have found that the same brain regions, particularly parts of the left temporal cortex, are similarly activated by both languages. But there must be some part of the brain that knows one language from another. A new imaging study reveals that this region is the left caudate — a finding supported by case studies of bilingual patients with damage to the left caudate, who are prone to switch languages involuntarily.

[405] Stockton, K., Usui K., Green D. W., Price C. J., Crinion J., Turner R., et al.
(2006).  Language Control in the Bilingual Brain.
Science. 312(5779), 1537 - 1540.

http://sciencenow.sciencemag.org/cgi/content/full/2006/608/2?etoc

Fast language learners have more white matter in auditory region

An imaging study has found that fast language learners have more white matter in a region of the brain that’s critical for processing sound. The study involved 65 French adults in their twenties, who were asked to distinguish two closely related sounds (the French 'da' sound from the Hindi 'da' sound). There was considerable variation in people’s ability to learn to tell these sounds apart — the fastest could do it within 8 minutes; the slowest were still guessing randomly after 20 minutes. The 11 fastest and 10 slowest learners were then given brain scans, revealing that the fastest learners had, on average, 70% more white matter in the left Heschl's gyrus than the slowest learners, as well as a greater asymmetry in the parietal lobe (the left being bigger than the right).

[569] Golestani, N., Molko N., Dehaene S., LeBihan D., & Pallier C.
(2007).  Brain Structure Predicts the Learning of Foreign Speech Sounds.
Cereb. Cortex. 17(3), 575 - 582.

http://www.newscientist.com/article/dn8964

Language learning declines after second year of life

A study involving 96 deaf children who had received cochlear implants during their first four years of life has found that the rate of language learning was greatest for those given implants before they turned two. Children given implants at three or four years of age acquired language skills more slowly. The finding supports the idea that there is a 'sensitive period' for language learning, and suggests that deaf children should get cochlear implants sooner (it is still relatively rare for them to be given to children younger than two).

The findings were presented on 16 May at the Acoustical Society of America conference in Vancouver, Canada.

http://www.nature.com/news/2005/050516/full/050516-1.html

Learning languages increases gray matter density

An imaging study of 25 Britons who did not speak a second language, 25 people who had learned another European language before the age of five and 33 bilinguals who had learned a second language between 10 and 15 years old found that the density of the gray matter in the left inferior parietal cortex of the brain was greater in bilinguals than in those without a second language. The effect was particularly noticeable in the "early" bilinguals. The findings were replicated in a study of 22 native Italian speakers who had learned English as a second language between the ages of two and 34.

Mechelli, A., Crinion, J.T., Noppeney, U., O'doherty, J., Ashburner, J., Frackowiak, R.S. & Price, C.J. 2004. Neurolinguistics: Structural plasticity in the bilingual brain. Nature, 431, 757.

http://news.bbc.co.uk/2/hi/health/3739690.stm

Being fluent in two languages may help keep the brain sharper for longer

A study of 104 people aged between 30 and 88 has found that those who were fluent in two languages rather than just one were sharper mentally. Those fluent in two languages responded faster on tasks assumed to place demands on working memory, compared to those who were fluent in just English, at all age groups. This is consistent with the theory that constant management of 2 competing languages enhances executive functions. Bilingual volunteers were also much less likely to suffer from the mental decline associated with old age. The finding is consistent with other research suggesting that mental activity helps in protecting older adults from mental decline. The participants were all middle class, and educated to degree level. Half of the volunteers came from Canada and spoke only English. The other half came from India and were fluent in both English and Tamil.

[268] Bialystok, E., Craik F. I. M., Klein R., & Viswanathan M.
(2004).  Bilingualism, aging, and cognitive control: evidence from the Simon task.
Psychology and Aging. 19(2), 290 - 303.

http://news.bbc.co.uk/2/hi/health/3794479.stm

Learning a second language may not be as laborious as believed

A study of adult learners of a second language has revealed that their brains still possess a surprising facility for learning words — much greater than the learner is consciously aware of. College students learning first-year French demonstrated brain activity that was clearly discriminating between real and pseudo-French words after only 14 hours of classroom instruction, although the students performed only at chance levels when asked to consciously choose whether or not the stimuli were real French words. The greater the exposure to French, the larger the difference in brain response to words and pseudo words.

[428] McLaughlin, J., Osterhout L., & Kim A.
(2004).  Neural correlates of second-language word learning: minimal instruction produces rapid change.
Nature Neuroscience. 7(7), 703 - 704.

http://www.eurekalert.org/pub_releases/2004-06/uow-baw061104.php

Beneficial effects of bilingual learning

A recent Canadian study comparing young monolingual children to bilingual found that bilingual children were much better at a non-language cognitive task. The 4-6 year old bilingual children were versed in a spoken language and a signing one. It was suggested that their higher cognitive skill was due to the increased computational demands of processing two different language systems.

Baker, S.A., Kovelman, I., Bialystok, E. & Petitto, L. A. (2003, November). “Bilingual children’s complex linguistic experience yields a cognitive advantage.” Presented at 2003 Society For Neuroscience conference. New Orleans, LA.

http://www.eurekalert.org/pub_releases/2003-11/sfn-ssb111103.php

Both languages active in bilingual speakers

An imaging study involving bilingual Dutch and English speakers suggests that when a bilingual person is speaking a second language, the first language is always active and cannot be suppressed. It was thought that an environment of total immersion in a language would provide massive exposure to a second language and suppress the first language. However, it’s now suggested that a large component of language immersion involves learning a new set of cues to the second language. To test this, students with no exposure to German or Dutch were taught 40 Dutch words. Some students learned the words in association with their English counterparts and others learned the words in association with a picture. Some of the pictures were oriented in the normal way and others were upside down or otherwise skewed. People who learned the Dutch in association with an object that was oriented uniquely were faster to later translate English words into Dutch. The mis-oriented pictures served as a unique cue.

The research was presented at the Second Language Research Forum, October 18, in Tucson, Arizona.

http://www.eurekalert.org/pub_releases/2003-10/ps-bla101703.php

Second language best taught in childhood

Sadly, it does appear that the easiest time to learn a second language is, indeed, in childhood. An imaging study has found that when grammatical judgement in the second language was compared to grammatical judgement in first language (as evidenced by performance on sentences with grammatical mistakes), there was no difference in brain activation in those who learned the second language as children. However, people who acquired the second language late and with different proficiency levels displayed significantly more activity in the Broca's region during second language grammatical processing. "This finding suggests that at the level of brain activity, the parallel learning of the two languages since birth or the early acquisition of a second language are crucial in the setting of the neural substrate for grammar."

[232] Wartenburger, I., Heekeren H. R., Abutalebi J., Cappa S. F., Villringer A., & Perani D.
(2003).  Early Setting of Grammatical Processing in the Bilingual Brain.
Neuron. 37(1), 159 - 170.

Study finds there's a critical time for learning all languages, including sign language

It is generally believed that there is a critical period for learning a first language, and that children not exposed to language during this period will never fully acquire language. It is also thought that this might apply as well to second language learning — that those who learn another language after puberty can never become as fluent as those who learn it before puberty. A recent study suggests that this may also be true for non-verbal languages. Using functional magnetic resonance imaging (fMRI), it was found that patterns of brain activity in bilingual people who learned American Sign Language (ASL) before puberty differed from those who learned it after puberty.

[1431] Newman, A. J., Bavelier D., Corina D., Jezzard P., & Neville H. J.
(2002).  A critical period for right hemisphere recruitment in American Sign Language processing.
Nat Neurosci. 5(1), 76 - 80.

http://www.eurekalert.org/pub_releases/2002-01/uow-sft010202.php

tags strategies: 

Review makes clear no gender differences in math ability

November, 2010

Analysis of hundreds of studies has found no difference between male and female in terms of their math skills.

A meta-analysis of 242 articles assessing the math skills of 1,286,350 people found no difference between the two sexes. This was confirmed in an analysis of the data from several large surveys of American adolescents (the National Longitudinal Surveys of Youth, the National Education Longitudinal Study of 1988, the Longitudinal Study of American Youth, and the National Assessment of Educational Progress).

Reference: 

[1924] Lindberg, S. M., Hyde J S., Petersen J. L., & Linn M. C.
(2010).  New trends in gender and mathematics performance: A meta-analysis..
Psychological Bulletin. 136(6), 1123 - 1135.

Source: 

Topics: 

tags memworks: 

tags study: 

Pages

Subscribe to RSS - Study