Lifestyle

Moderate to intense exercise may protect the brain in old age

August, 2011
  • Moderate but not light exercise was found to help protect the brain from brain infarcts in some older adults, but not all.

Another study showing the value of exercise for preserving your mental faculties in old age. This time it has to do with the development of small brain lesions or infarcts called "silent strokes." Don’t let the words “small” and “silent” fool you — these lesions have been linked to memory problems and even dementia, as well as stroke, an increased risk of falls and impaired mobility.

The study involved 1,238 people taken from the Northern Manhattan Study, a long-running study looking at stroke and vascular problems in a diverse community. Their brains were scanned some six years after completing an exercise questionnaire, when they were an average of 70 years old. The scans found that 16% of the participants had these small brain lesions.

Those who had reported engaging in moderate to intense exercise were 40% less likely to have these infarcts compared to people who did no regular exercise. Depressingly, there was no significant difference between those who engaged in light exercise and those who didn’t exercise (which is not to say that light exercise doesn’t help in other regards! a number of studies have pointed to the value of regular brisk walking for fighting cognitive decline). This is consistent with earlier findings that only the higher levels of activity consistently protect against stroke.

The results remained the same after other vascular risk factors such as high blood pressure, high cholesterol and smoking, were accounted for. Of the participants, 43% reported no regular exercise; 36% engaged in regular light exercise (e.g., golf, walking, bowling or dancing); 21% engaged in regular moderate to intense exercise (e.g., hiking, tennis, swimming, biking, jogging or racquetball).

However, there was no association with white matter lesions, which have also been associated with an increased risk of stroke and dementia.

Moreover, this effect was not seen among those with Medicaid or no health insurance, suggesting that lower socioeconomic status (or perhaps poorer access to health care) is associated with negative factors that counteract the benefits of exercise. Previous research has found that lower SES is associated with higher cardiovascular disease regardless of access to care.

Of the participants, 65% were Hispanic, 17% non-Hispanic black, and 15% non-Hispanic white. Over half (53%) had less than high school education, and 47% were on Medicaid or had no health insurance.

Reference: 

Source: 

Topics: 

tags development: 

tags lifestyle: 

tags problems: 

Sleep and memory - round-up of recent reports

July, 2011

A round-up of recent reports relating to the role of sleep in consolidating memory.

Sleep can boost classroom performance of college students

There’s a lot of evidence that memories are consolidated during sleep, but most of it has involved skill learning. A new study extends the findings to complex declarative information — specifically, information from a lecture on microeconomics.

The study involved 102 university undergraduates who had never taken an economics course. In the morning or evening they completed an introductory, virtual lecture that taught them about concepts and problems related to supply and demand microeconomics. They were then tested on the material either immediately, after a 12-hour period that included sleep, after 12 hours without sleep, or after one week. The test included both basic problems that they had been trained to solve, and "transfer" problems that required them to extend their knowledge to novel, but related, problems.

Performance was better for those who slept, and this was especially so for the novel, 'transfer' integration problems.

Rule-learning task also benefits from sleep

Another complex cognitive task was investigated in a study of 54 college undergraduates who were taught to play a card game for rewards of play money in which wins and losses for various card decks mimic casino gambling (the Iowa Gambling Task is typically used to assess frontal lobe function). Those who had a normal night’s sleep as part of the study drew from decks that gave them the greatest winnings four times more often than those who spent the 12-hour break awake, and they better understood the underlying rules of the game.

The students were given a brief morning or afternoon preview of the gambling task (too brief to learn the underlying rule). They returned twelve hours later (i.e., either after a normal night’s sleep, or after a day of their usual activities), when they played the full gambling task for long enough to learn the rules. Those who got to sleep between the two sessions played better and showed a better understanding of the rules when questioned.

To assure that time of day didn’t explain the different performance, two groups of 17 and 21 subjects carried out both the preview and the full task either in the morning or the evening. Time of day made no difference.

Sleep problems may be a link between perceived racism and poor health

Analysis of data from the 2006 Behavioral Risk Factor Surveillance System, involving 7,093 people in Michigan and Wisconsin, suggests that sleep deprivation may be one mediator of the oft-reported association between discrimination and poorer cognitive performance.

The survey asked the question: "Within the past 12 months when seeking health care, do you feel your experiences were worse than, the same as, or better than for people of other races?" Taking this as an index of perceived racism, and comparing it with reports of sleep disturbance (difficulty sleeping at least six nights in the past two weeks), the study found that individuals who perceived racial discrimination were significantly more likely to experience sleep difficulties, even after allowing for socioeconomic factors and depression. Risk of sleep disturbance was nearly doubled in those who perceived themselves as discriminated against, and although this was reduced after depression was taken into account, it remained significant.

Sleep problems more prevalent than expected in urban minority children

Ten families also underwent sleep monitoring at home for five to seven days. All children who completed actigraphy monitoring had shortened sleep duration, with an average sleep duration of 8 hours, significantly less than the 10 to 11 hours recommended for children in this age group.

It’s worth noting that parents consistently overestimated sleep duration. Although very aware of bedtime and wake time, parents are less aware of time spent awake during the night.

(Also note that the figures I quote are taken from the conference abstract, which differ from those quoted in the press release.)

Rocking really does help sleep

If you or your loved one is having troubles getting to sleep, you might like to note an intriguing little study involving 12 healthy males (aged 22-38, and good sleepers). The men twice took a 45-minute afternoon nap on a bed that could slowly rock. On one occasion, it was still; on the other, it rocked. Rocking brought about faster sleep, faster transition to deeper sleep, and increased slow oscillations and sleep spindles (hallmarks of deep sleep). All these results were evident in every participant.

Sleep helps long-term memory in two ways

A fruit fly study points to two dominant theories of sleep being correct. The two theories are (a) that synapses are pruned during sleep, ensuring that only the strongest connections survive (synaptic homeostasis), and (b) that memories are replayed and consolidated during sleep, so that some connections are reactivated and thus made stronger (memory consolidation).

The experiment was made possible by the development of a new strain of fruit fly that can be induced to fall asleep when temperatures rise. The synaptic homeostasis model was supported when flies were placed in socially enriched environments, then either induced to sleep or not, before being taught a courtship ritual. Those that slept developed long-term memories of the ritual, while those that didn’t sleep didn’t remember it. The memory consolidation theory was supported when flies trained using a protocol designed to give them short-term memories retained a lasting memory, if sleep was induced immediately after the training.

In other words, it seems that both pruning and replaying are important for building long-term memories.

Mouse studies identify the roots of memory impairment resulting from sleep deprivation

Sleep deprivation in known to result in increased levels of adenosine in the brain, whether fruit fly or human (caffeine blocks the effects of adenosine). New mice studies now reveal the mechanism.

Mice given a drug that blocked a particular adenosine receptor in the hippocampus (the A1 receptor) failed to show the normal memory impairment evoked by sleep deprivation (being woken halfway through their normal 12-hour sleep schedule). The same results occurred if mice were genetically engineered to lack a gene involved in the production of glial transmitters (necessary to produce adenosine).

Memory was tested by the mice being allowed to explore a box with two objects, and then returned to the box on the next day, where one of the two objects had been moved. They would normally explore the moved object more than other objects, but sleep-deprived mice don’t usually react to the change, because they don’t remember where the object had been. In both these cases, the sleep-deprived mice showed no memory impairment.

Both the drugged and genetically protected mice also showed greater synaptic plasticity in the hippocampus after being sleep deprived than the untreated group.

The two groups reveal two parts of the chemical pathway involved in sleep deprivation. The genetic engineering experiment shows that the adenosine comes from glia's release of adenosine triphosphate (ATP). The drug experiment shows that the adenosine goes to the A1 receptor in the hippocampus.

The findings provide the first evidence that astrocytic ATP and adenosine A1R activity contribute to the effects of sleep deprivation on hippocampal synaptic plasticity and hippocampus-dependent memory, and suggest a new therapeutic target to reverse the cognitive deficits induced by sleep loss.

 

Reference: 

Scullin M, McDaniel M, Howard D, Kudelka C. 2011. Sleep and testing promote conceptual learning of classroom materials.  Presented Tuesday, June 14, in Minneapolis, Minn., at SLEEP 2011, the 25th Anniversary Meeting of the Associated Professional Sleep Societies LLC (APSS).

[2297] Pace‐Schott, E. F., Nave G., Morgan A., & Spencer R. M. C.
(Submitted).  Sleep‐dependent modulation of affectively guided decision‐making.
Journal of Sleep Research.

Grandner MA, Hale L, Jackson NJ, Patel NP, Gooneratne N, Troxel WM. 2011. Sleep disturbance and daytime fatigue associated with perceived racial discrimination. Presented Tuesday, June 14, in Minneapolis, Minn., at SLEEP 2011, the 25th Anniversary Meeting of the Associated Professional Sleep Societies LLC (APSS).

Sheares, B.J., Dorsey, K.B., Lamm, C.I., Wei, Y., Kattan, M., Mellins, R.B. & Evans, D. 2011. Sleep Problems In Urban Minority Children May Be More Prevalent Than Previously Recognized. Presented at the ATS 2011 International Conference in Denver.

[2330] Bayer, L., Constantinescu I., Perrig S., Vienne J., Vidal P-P., Mühlethaler M., et al.
(2011).  Rocking synchronizes brain waves during a short nap.
Current Biology. 21(12), R461-R462 - R461-R462.

[2331] Donlea, J. M., Thimgan M. S., Suzuki Y., Gottschalk L., & Shaw P. J.
(2011).  Inducing Sleep by Remote Control Facilitates Memory Consolidation in Drosophila.
Science. 332(6037), 1571 - 1576.

[2287] Florian, C., Vecsey C. G., Halassa M. M., Haydon P. G., & Abel T.
(2011).  Astrocyte-Derived Adenosine and A1 Receptor Activity Contribute to Sleep Loss-Induced Deficits in Hippocampal Synaptic Plasticity and Memory in Mice.
The Journal of Neuroscience. 31(19), 6956 - 6962.

Source: 

Sleep can boost classroom performance of college students http://www.eurekalert.org/pub_releases/2011-06/aaos-scb060611.php Rule-learning task also benefits from sleep http://medicalxpress.com/news/2011-05-excellent-science-based-advice.html Sleep problems may be a link between perceived racism and poor health http://medicalxpress.com/news/2011-06-problems-link-racism-poor-health.html Sleep problems more prevalent than expected in urban minority children http://medicalxpress.com/news/2011-05-problems-prevalent-urban-minority-... Rocking really does help sleep http://www.scientificamerican.com/podcast/episode.cfm?id=rocking-increas... Sleep helps long-term memory in two ways http://the-scientist.com/2011/06/23/sleep-on-it/ Mouse studies identify the roots of memory impairment resulting from sleep deprivation http://www.eurekalert.org/pub_releases/2011-05/uop-pri051711.php

Topics: 

tags lifestyle: 

tags memworks: 

Religious factors may influence brain shrinkage in old age

July, 2011
  • An intriguing new study suggests life-changing religious experiences may result in greater brain shrinkage in old age.

The brain tends to shrink with age, with different regions being more affected than others. Atrophy of the hippocampus, so vital for memory and learning, is associated with increased risk of developing Alzheimer’s, and has also been linked to depression.

In a study involving 268 older adults (58+), the hippocampus of those reporting a life-changing religious experience was found to be shrinking significantly more compared to those not reporting such an experience. Significantly greater hippocampal atrophy was also found among born-again Protestants, Catholics, and those with no religious affiliation, compared with Protestants not identifying as born-again.

The participants are not a general sample — they were originally recruited for the NeuroCognitive Outcomes of Depression in the Elderly. However, some of the participants were from the control group, who had no history of depression. Brain scans were taken at the beginning of the study, and then every two years. The length of time between the baseline scan and the final scan ranged from 2 to 8 years (average was 4).

Questions about religious experiences were asked in an annual survey, so could change over time. Two-thirds of the group was female, and 87% were white. The average age was 68. At baseline, 42% of the group was non-born-again Protestant, 36% born-again Protestant; 8% Catholic; 6% other religion. Only 7% reported themselves as having no religion. By the end of the study, 44% (119 participants) reported themselves born-again, and 13% (36) reported having had life-changing religious experiences.

These associations persisted after depression status, acute stress, and social support were taken into account. Nor did other religious factors (such as prayer, meditation, or Bible study) account for the changes.

It is still possible that long-term stress might play a part in this association — the study measured acute rather than cumulative stress. The researchers suggest that life-changing religious experiences can be stressful, if they don’t fit in with your existing beliefs or those of your family and friends, or if they lead to new social systems that add to your stress.

Of course, the present results can be interpreted in several ways — is it the life-changing religious experience itself that is the crucial factor? Or the factors leading up to that experience? Or the consequences of that experience? Still, it’s certainly an intriguing finding, and it will be interesting to see more research expanding and confirming (or not!) this result.

More generally, the findings may help clarify the conflicting research about the effects of religion on well-being, by pointing to the fact that religion can’t be considered a single factor, but one subject to different variables, some of which may be positive and others not.

Reference: 

Source: 

Topics: 

tags: 

tags development: 

tags memworks: 

tags problems: 

Young binge drinkers less able to learn new verbal information

July, 2011

Binge drinking university students, regardless of gender, performed more poorly on tests of verbal memory, but not on a test of visual memory.

Following animal research indicating that binge drinking damages the hippocampus, and other research showing that this learning and memory center is still developing during adolescence, a new study has investigated the effects of binge drinking on learning in university students. The study, involving 122 Spanish university students (aged 18-20), of whom half engaged in binge drinking, found a clear association between binge drinking and a lower ability to learn new verbal information.

Specifically, binge drinkers were more affected by interference in the Rey Auditory Verbal Learning Test, and remembered fewer words; they also performed worse on the Weschler Memory Scale-3rd ed. (WMS-III) Logical Memory subtest, both on immediate and delayed recall. However, there were no differences between the two groups on the WMS-III Family Pictures subtest (measuring visual declarative memory).

These results persisted even after controlling for other possible confounding variables such as intellectual levels, history of neurological or psychopathological disorders, other drug use, or family history of alcoholism.

The genders were evenly represented in both groups. Interestingly, and in contradiction of some other research, women were not found to be more vulnerable to the neurotoxic effects of binge drinking.

Reference: 

[2298] Parada, M., Corral M., Caamaño‐Isorna F., Mota N., Crego A., Holguín S R., et al.
(Submitted).  Binge Drinking and Declarative Memory in University Students.
Alcoholism: Clinical and Experimental Research.

Source: 

Topics: 

tags development: 

tags lifestyle: 

tags memworks: 

Air pollution impacts cognitive performance

July, 2011

A study of Michigan public schools, and a mouse study, add to growing evidence that high levels of air pollution negatively affect learning and memory.

Following several recent studies pointing to the negative effect of air pollution on children’s cognitive performance (see this April 2010 news report and this May 2011 report), a study of public schools in Michigan has found that 62.5% of the 3660 schools in the state are located in areas with high levels of industrial pollution, and those in areas with the highest industrial air pollution levels had the lowest attendance rates and the highest proportions of students who failed to meet state educational testing standards in English and math. Attendance rates are a potential indicator of health levels.

Minority students were especially hit by this — 81.5% of African American and 62.1% of Hispanic students attend schools in the top 10% of the most polluted areas, compared to 44.4% of white students.

Almost all (95%) of the industrial air pollution around schools comes from 12 chemicals (diisocyanates, manganese, sulfuric acid, nickel, chlorine, chromium, trimethylbenzene, hydrochloric acid, molybdenum trioxide, lead, cobalt and glycol ethers) that are all implicated in negative health effects, including increased risk of respiratory, cardiovascular, developmental and neurological disorders, as well as cancer.

There are potentially two issues here: the first is that air pollution causes health issues which lower school attendance and thus impacts academic performance; the other is that the pollution also directly effects the brain, thus affecting cognitive performance.

A new mouse study looking at the effects of air pollution on learning and memory has now found that male mice exposed to polluted air for six hours a day, five days a week for 10 months (nearly half their lifespan), performed significantly more poorly on learning and memory tasks than those male mice living in filtered air. They also showed more signs of anxiety- and depressive-like behaviors.

These changes in behavior and cognition were linked to clear differences in the hippocampus — those exposed to polluted air had fewer dendritic spines in parts of the hippocampus (CA1 and CA3 regions), shorter dendrites and overall reduced cell complexity. Previous mouse research has also found that such pollution causes widespread inflammation in the body, and can be linked to high blood pressure, diabetes and obesity. In the present study, the same low-grade inflammation was found in the hippocampus. The hippocampus is particularly sensitive to damage caused by inflammation.

The level of pollution the mice were exposed to was equivalent to what people may be exposed to in some polluted urban areas.

Reference: 

Source: 

Topics: 

tags: 

tags development: 

tags lifestyle: 

tags memworks: 

tags problems: 

Smaller life space linked to greater risk of cognitive decline

June, 2011

A study of healthy seniors reveals that homebodies have faster cognitive decline and more risk of developing Alzheimer’s and MCI, than those who have a wider life-space.

Growing evidence has pointed to the benefits of social and mental stimulation in preventing dementia, but until now no one has looked at the role of physical environment.

A study involving 1294 healthy older adults found that those whose life-space narrowed to their immediate home were almost twice as likely to develop the condition as those with the largest life-space (out-of-town). The homebound also had an increased risk of MCI and a faster rate of global cognitive decline.

By the end of the eight-year study (average follow-up of 4.4 years), 180 people (13.9%) had developed Alzheimer’s. The association remained after physical function, disability, depressive symptoms, social network size, vascular disease burden, and vascular risk factors, were taken into account.

It may be that life-space is an indicator of how engaged we are with the world, with the associated cognitive stimulation that offers.

Reference: 

Source: 

Topics: 

tags: 

tags development: 

tags problems: 

Long-term users of ecstasy risk structural brain damage

June, 2011
  • A small study suggests that regular ecstasy use produces brain atrophy, especially in the hippocampus.

Imaging the brains of 10 young men who were long term users of ecstasy and seven of their healthy peers with no history of ecstasy use has revealed a significantly smaller hippocampus in those who used ecstasy. The overall proportion of gray matter was also lower, suggesting the effects of ecstasy may not be restricted to the hippocampus.

Both groups had used similar amounts of recreational drugs other than ecstasy, and drank alcohol regularly. The ecstasy group had not taken ecstasy for more than two months before the start of the study on average.

Reference: 

[2218] den Hollander, B., Schouw M., Groot P., Huisman H., Caan M., Barkhof F., et al.
(2011).  Preliminary evidence of hippocampal damage in chronic users of ecstasy.
Journal of Neurology, Neurosurgery & Psychiatry.

Source: 

Topics: 

tags development: 

tags lifestyle: 

tags problems: 

High iron, copper levels block neuron repair

June, 2011

New findings help explain why too much copper and iron are bad for your brain, and why curry is good for it.

A new study finds out why curcumin might help protect against dementia, and links two factors associated with Alzheimer’s and Parkinson’s diseases: DNA damage by reactive oxygen species (ROS), and excessive levels of copper and iron in parts of the brain. It turns out that high levels of copper or iron help generate large numbers of ROS and interfere with DNA repair.

While small amounts of iron and copper are vital, these are normally bound by proteins. However, when there’s too much, it can overwhelm the proteins and the result is "free" iron or copper ions circulating in the blood, able to initiate chemical reactions that produce reactive oxygen species. Moreover, the free copper and iron also interferes with the activity of two enzymes that repair DNA, NEIL1 and NEIL2.

However, the curry spice curcumin binds to iron and copper and was extremely effective in protecting the NEIL enzymes from the metals.

Reference: 

Hegde, M.L., Hegde, P.M. , Rao, K.S.J. & Mitra, S. 2011. Oxidative Genome Damage and Its Repair in Neurodegenerative Diseases: Function of Transition Metals as a Double-Edged Sword. Journal of Alzheimer's Disease , 25 (1), 183-198.

Source: 

Topics: 

tags: 

tags development: 

tags lifestyle: 

tags problems: 

Cognitive impairment in obese improved by surgery

June, 2011

Consistent with evidence linking obesity and impaired cognition, a new study has found improved cognition in obese patients after bariatric surgery.

Growing evidence links obesity and poorer cognitive performance. Many factors associated with obesity, such as high blood pressure, type 2 diabetes and sleep apnea, damage the brain.

A study involving109 bariatric surgery patients and 41 obese control subjects has found that the bariatric surgery patients demonstrated improved memory and concentration 12 weeks after surgery, improving from the slightly impaired range to the normal range. That of the obese controls actually declined over this period. The improvement of those who had surgery seemed to be particularly related to improved blood pressure.

Study participants will be tested one year and two years after surgery.

Reference: 

[2224] Gunstad, J., Strain G., Devlin M. J., Wing R., Cohen R. A., Paul R. H., et al.
(2010).  Improved memory function 12 weeks after bariatric surgery.
Surgery for Obesity and Related Diseases.

Source: 

Topics: 

tags: 

tags lifestyle: 

tags problems: 

Treating high blood pressure, cholesterol, diabetes may lower risk of Alzheimer's disease

May, 2011

New findings reveal that mild cognitive impairment is more likely to develop into Alzheimer’s if vascular risk factors are present, especially if untreated.

A study following 837 people with MCI, of whom 414 (49.5%) had at least one vascular risk factor, has found that those with risk factors such as high blood pressure, diabetes, cerebrovascular disease and high cholesterol were twice as likely to develop Alzheimer's disease. Over five years, 52% of those with risk factors developed Alzheimer's, compared to 36% of those with no risk factors In total, 298 people (35.6%) developed Alzheimer's.

However, of those with vascular risk factors, those receiving full treatment for their vascular problems were 39% less likely to develop Alzheimer's disease than those receiving no treatment, and those receiving some treatments were 26% less likely to develop the disease.

Treatment of risk factors included using high blood pressure medicines, insulin, cholesterol-lowering drugs and diet control. Smoking and drinking were considered treated if the person stopped smoking or drinking at the start of the study.

Reference: 

Source: 

Topics: 

tags development: 

tags lifestyle: 

tags problems: 

Pages

Subscribe to RSS - Lifestyle