Reducing excess brain activity improves memory in aMCI

June, 2012

A small study supports the view that excess activity in the hippocampus seen in aMCI is not compensatory but a sign of dysfunction, and shows that an epileptic drug reduces activity and improves memory.

Interpreting brain activity is a very tricky business. Even the most basic difference can be interpreted in two ways — i.e., what does it mean if a region is more active in one group of people compared to another? A new study not only indicates a new therapeutic approach to amnestic mild cognitive impairment, but also demonstrates the folly of assuming that greater activity is good.

Higher activity in the dentate gyrus/CA3 region of the hippocampus is often seen in disorders associated with an increased Alzheimer's risk, such as aMCI. It’s been thought, reasonably enough, that this might reflect compensatory activity, as the brain recruits extra resources in the face of memory loss. But rodent studies have suggested an alternative interpretation: that the increased activity might itself be part of the problem.

Following on from animal studies, this new study has investigated the effects of a drug that reduces hippocampal hyperactivity. The drug, levetiracetam, is used to treat epilepsy. The 17 patients with aMCI (average age 73) were given a placebo in the first two-week treatment phase and a low dose of the epilepsy drug during the second treatment phase, while 17 controls (average age 69) were given a placebo in both treatment phases. The treatments were separated by four weeks, and brain scans were given at the end of each phase. Participants carried out a cognitive task designed to assess memory errors attributable to a dysfunction in the dentate gyrus/CA3 region (note that these neighboring areas are not clearly demarcated from each other, and so are best analyzed as one).

As predicted, those with aMCI showed greater activity in this region, and treatment with the drug significantly reduced that activity. The drug treatment also significantly improved their performance on the three-choice recognition task, with a significant decrease in memory errors. It did not have a significant effect on general cognition or memory (as measured by delayed recall on the Verbal Paired Associates subtest of the Wechsler Memory Scale, the Benton Visual Retention Test, and the Buschke Selective Reminding Test).

These findings make it clear that the excess activity in the hippocampus is not compensatory, and also point to the therapeutic value of targeting this hyperactivity for those with aMCI. It also raises the possibility that other conditions might benefit from this approach. For example, those who carry the Alzheimer’s gene, APOE4, also show increased hippocampal activity.

Reference: 

Related News

As we all know, people are living longer and obesity is at appalling levels. For both these (completely separate!) reasons, we expect to see growing rates of dementia. A new analysis using data from the long-running Framingham Heart Study offers some hope to individuals, however.

A study involving 39 older adults has found that those randomly assigned to a “high-challenge” group showed improved cognitive performance and more efficient brain activity compared with those assigned to a low-challenge group, or a control group.

Data from 2,800 participants (aged 65+) in the Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) study has revealed that one type of cognitive training benefits less-educated people more than it does the more-educated.

A study involving 266 people with mild cognitive impairment (aged 70+) has found that B vitamins are more effective in slowing cognitive decline when people have higher omega 3 levels.

Growing research has implicated infections as a factor in age-related cognitive decline, but these have been cross-sectional (comparing different individuals, who will have a number of other, possibly confounding, attributes).

Another study adds to the growing evidence that a Mediterranean diet is good for the aging brain.

A two-year study which involved metabolic testing of 50 people, suggests that Alzheimer's disease consists of three distinct subtypes, each one of which may need to be treated differently. The finding may help explain why it has been so hard to find effective treatments for the disease.

A study involving both mice and human cells adds to evidence that stress is a risk factor for Alzheimer's.

Data from 23,572 Americans from the Reasons for Geographic and Racial Differences in Stroke (REGARDS) study has revealed that those who survived a stroke went on to have significantly faster rates of cognitive decline as they aged.

A study involving 382 older adults (average age 75) followed for around five years, has found that those who don’t get enough vitamin D may experience cognitive decline at a much faster rate than people who have adequate vitamin D.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news