Old honeybees can regain youthful cognition when they return to youthful duties

August, 2012
  • A honey bee study shows how old foraging bees quickly start to decline cognitively, and how this can be reversed in some if they return to more social domestic duties in the hive.

I often talk about the importance of attitudes and beliefs for memory and cognition. A new honey bee study provides support for this in relation to the effects of aging on the brain, and suggests that this principle extends across the animal kingdom.

Previous research has shown that bees that stay in the nest and take care of the young remain mentally competent, but they don’t nurse for ever. When they’re older (after about 2-3 weeks), they become foragers, and foraging bees age very quickly — both physically and mentally. Obviously, you would think, bees ‘retire’ to foraging, and their old age is brief (they begin to show cognitive decline after just two weeks).

But it’s not as simple as that, because in artificial hives where worker bees are all the same age, nurse bees of the same age as foragers don’t show the same cognitive and sensory decline. Moreover, nurse bees have been found to maintain their cognitive abilities for more than 100 days, while foragers die within 18 days and show cognitive declines after 13-15 days (although their ability to assess sweetness remains intact).

The researchers accordingly asked a very interesting question: what happens if the foragers return to babysitting?

To achieve this, they removed all of the younger nurse bees from the nest, leaving only the queen and babies. When the older, foraging bees returned to the nest, activity slowed down for several days, and then they re-organized themselves: some of the old bees returned to foraging; others took on the babysitting and housekeeping duties (cleaning, building the comb, and tending to the queen). After 10 days, around half of these latter bees had significantly improved their ability to learn new things.

This cognitive improvement was also associated with a change in two specific proteins in their brains: one that has been associated with protection against oxidative stress and inflammation associated with Alzheimer disease and Huntington disease in humans (Prx6), and another dubbed a “chaperone” protein because it protects other proteins from being damaged when brain or other tissues are exposed to cell-level stress.

Precisely what it is about returning to the hive that produces this effect is a matter of speculation, but this finding does show that learning impairment in old bees can be reversed by changes in behavior, and this reversal is correlated with specific changes in brain protein.

Having said this, it shouldn’t be overlooked that only some of the worker bees showed this brain plasticity. This is not, apparently, due to differences in genotype, but may depend on the amount of foraging experience.

The findings add weight to the idea that social interventions can help our brains stay younger, and are consistent with growing evidence that, in humans, social engagement helps protect against dementia and age-related cognitive impairment.

The (probably) experience-dependent individual differences shown by the bees is perhaps mirrored in our idea of cognitive reserve, but with a twist. The concept of cognitive reserve emphasizes that accumulating a wealth of cognitive experience (whether through education or occupation or other activities) protects your brain from the damage that might occur with age. But perhaps (and I’m speculating now) we should also consider the other side of this: repeated engagement in routine or undemanding activities may have a deleterious effect, independent of and additional to the absence of more stimulating activities.

Reference: 

Related News

Data from 11,926 older twins (aged 65+) has found measurable cognitive impairment in 25% of them and subjective cognitive impairment in a further 39%, meaning that 64% of these older adults were experiencing some sort of cognitive impairment.

Another study adds to the evidence that changes in the brain that may lead eventually to Alzheimer’s begin many years before Alzheimer’s is diagnosed.

A ten-year study following 12,412 middle-aged and older adults (50+) has found that those who died after stroke had more severe memory loss in the years before stroke compared to those who survived stroke and those who didn't have a stroke.

A small study of the sleep patterns of 100 people aged 45-80 has found a link between sleep disruption and level of amyloid plaques (characteristic of Alzheimer’s disease).

Following on from research showing an association between lower walking speed and increased risk of dementia, and weaker hand grip strength and increased dementia risk, a large study has explored whether this association extends to middle-aged and younger-old adults.

New data from the ongoing validation study of the Alzheimer's Questionnaire (AQ), from 51 cognitively normal individuals (average age 78) and 47 aMCI individuals (average age 74), has found that the AQ is effective in identifying not only those with Alzheimer’s but also those older adults wi

In the study, 64 older adults (60-74; average 70) and 64 college students were compared on a word recognition task. Both groups first took a vocabulary test, on which they performed similarly. They were then presented with 12 lists of 15 semantically related words.

I have reported often on studies pointing to obesity as increasing your risk of developing dementia, and on the smaller evidence that calorie restriction may help fight age-related cognitive decline and dement

Openness to experience – being flexible and creative, embracing new ideas and taking on challenging intellectual or cultural pursuits – is one of the ‘Big 5’ personality traits. Unlike the other four, it shows some correlation with cognitive abilities.

I’ve spoken before about the association between hearing loss in old age and dementia risk.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news