Old honeybees can regain youthful cognition when they return to youthful duties

August, 2012
  • A honey bee study shows how old foraging bees quickly start to decline cognitively, and how this can be reversed in some if they return to more social domestic duties in the hive.

I often talk about the importance of attitudes and beliefs for memory and cognition. A new honey bee study provides support for this in relation to the effects of aging on the brain, and suggests that this principle extends across the animal kingdom.

Previous research has shown that bees that stay in the nest and take care of the young remain mentally competent, but they don’t nurse for ever. When they’re older (after about 2-3 weeks), they become foragers, and foraging bees age very quickly — both physically and mentally. Obviously, you would think, bees ‘retire’ to foraging, and their old age is brief (they begin to show cognitive decline after just two weeks).

But it’s not as simple as that, because in artificial hives where worker bees are all the same age, nurse bees of the same age as foragers don’t show the same cognitive and sensory decline. Moreover, nurse bees have been found to maintain their cognitive abilities for more than 100 days, while foragers die within 18 days and show cognitive declines after 13-15 days (although their ability to assess sweetness remains intact).

The researchers accordingly asked a very interesting question: what happens if the foragers return to babysitting?

To achieve this, they removed all of the younger nurse bees from the nest, leaving only the queen and babies. When the older, foraging bees returned to the nest, activity slowed down for several days, and then they re-organized themselves: some of the old bees returned to foraging; others took on the babysitting and housekeeping duties (cleaning, building the comb, and tending to the queen). After 10 days, around half of these latter bees had significantly improved their ability to learn new things.

This cognitive improvement was also associated with a change in two specific proteins in their brains: one that has been associated with protection against oxidative stress and inflammation associated with Alzheimer disease and Huntington disease in humans (Prx6), and another dubbed a “chaperone” protein because it protects other proteins from being damaged when brain or other tissues are exposed to cell-level stress.

Precisely what it is about returning to the hive that produces this effect is a matter of speculation, but this finding does show that learning impairment in old bees can be reversed by changes in behavior, and this reversal is correlated with specific changes in brain protein.

Having said this, it shouldn’t be overlooked that only some of the worker bees showed this brain plasticity. This is not, apparently, due to differences in genotype, but may depend on the amount of foraging experience.

The findings add weight to the idea that social interventions can help our brains stay younger, and are consistent with growing evidence that, in humans, social engagement helps protect against dementia and age-related cognitive impairment.

The (probably) experience-dependent individual differences shown by the bees is perhaps mirrored in our idea of cognitive reserve, but with a twist. The concept of cognitive reserve emphasizes that accumulating a wealth of cognitive experience (whether through education or occupation or other activities) protects your brain from the damage that might occur with age. But perhaps (and I’m speculating now) we should also consider the other side of this: repeated engagement in routine or undemanding activities may have a deleterious effect, independent of and additional to the absence of more stimulating activities.

Reference: 

Related News

I’ve reported before on the growing evidence that metabolic syndrome in middle and old age is linked to greater risk of cognitive impairment in old age and faster decline.

Memory problems in those with mild cognitive impairment may begin with problems in visual discrimination and vulnerability to interference — a hopeful discovery in that interventions to improve discriminability and reduce interference may have a flow-on effect to cognition.

Here’s an exciting little study, implying as it does that one particular aspect of information processing underlies much of the cognitive decline in older adults, and that this can be improved through training.

HIV-associated dementia occurs in around 30% of untreated HIV-positive patients. Surprisingly, it also is occasionally found in some patients (2-3%) who are being successfully treated for HIV (and show no signs of AIDS).

My recent reports on brain training for older adults (see, e.g., Review of working memory training programs finds no broader benefit;

Back in 2009, I reported briefly on a large Norwegian study that found that older adults who consumed chocolate, wine, and tea performed significantly better on cognitive tests.

Two years ago, I reported on a clinical trial of a nutrient cocktail called Souvenaid for those with early Alzheimer’s.

Adding to the growing evidence for the long-term cognitive benefits of childhood music training, a new study has found that even a few years of music training in childhood has long-lasting benefits for auditory discrimination.

The study involved 120 healthy older adults (60-79) from Shanghai, who were randomly assigned to one of four groups: one that participated in three sessions of tai chi every week for 40 weeks; another that instead had ‘social interaction’ sessions (‘lively discussions’); another in which partici

The latest finding from the large, long-running Health, Aging, and Body Composition (Health ABC) Study adds to the evidence that preventing or controlling diabetes helps prevent age-related cognitive decline.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news