More support for value of cognitive activities in fighting cognitive decline in old age

September, 2012

Two recent conference presentations add to the evidence for the benefits of ‘brain training’, and of mental stimulation, for holding back age-related cognitive decline.

My recent reports on brain training for older adults (see, e.g., Review of working memory training programs finds no broader benefit; Cognitive training shown to help healthy older adults; Video game training benefits cognition in some older adults) converge on the idea that cognitive training can indeed be beneficial for older adults’ cognition, but there’s little wider transfer beyond the skills being practiced. That in itself can be valuable, but it does reinforce the idea that the best cognitive training covers a number of different domains or skill-sets. A new study adds little to this evidence, but does perhaps emphasize the importance of persistence and regularity in training.

The study involved 59 older adults (average age 84), of whom 33 used a brain fitness program 5 days a week for 30 minutes a day for at least 8 weeks, while the other group of 26 were put on a waiting list for the program. After two months, both groups were given access to the program, and both were encouraged to use it as much or as little as they wanted. Cognitive testing occurred before the program started, at two months, and at six months.

The first group to use the program used the program on average for 80 sessions, compared to an average 44 sessions for the wait-list group.

The higher use group showed significantly higher cognitive scores (delayed memory test; Boston Naming test) at both two and six months, while the lower (and later) use group showed improvement at the end of the six month period, but not as much as the higher use group.

I’m afraid I don’t have any more details (some details of the training program would be nice) because it was a conference presentation, so I only have access to the press release and the abstract. Because we don’t know exactly what the training entailed, we don’t know the extent to which it practiced the same skills that were tested. But we may at least add it to the evidence that you can improve cognitive skills by regular training, and that the length/amount of training (and perhaps regularity, since the average number of sessions for the wait-list group implies an average engagement of some three times a week, while the high-use group seem to have maintained their five-times-a-week habit) matters.

Another interesting presentation at the conference was an investigation into mental stimulating activities and brain activity in older adults.

In this study, 151 older adults (average age 82) from the Rush Memory and Aging Project answered questions about present and past cognitive activities, before undergoing brain scans. The questions concerned how frequently they engaged in mentally stimulating activities (such as reading books, writing letters, visiting a library, playing games) and the availability of cognitive resources (such as books, dictionaries, encyclopedias) in their home, during their lifetime (specifically, at ages 6, 12, 18, 40, and now).

Higher levels of cognitive activity and cognitive resources were also associated with better cognitive performance. Moreover, after controlling for education and total brain size, it was found that frequent cognitive activity in late life was associated with greater functional connectivity between the posterior cingulate cortex and several other regions (right orbital and middle frontal gyrus, left inferior frontal gyrus, hippocampus, right cerebellum, left inferior parietal cortex). More cognitive resources throughout life was associated with greater functional connectivity between the posterior cingulate cortex and several other regions (left superior occipital gyrus, left precuneus, left cuneus, right anterior cingulate, right middle frontal gyrus, and left inferior frontal gyrus).

Previous research has implicated a decline in connectivity with the posterior cingulate cortex in mild cognitive impairment and Alzheimer’s disease.

Cognitive activity earlier in life was not associated with differences in connectivity.

The findings provide further support for the idea “Use it or lose it!”, and suggests that mental activity protects against cognitive decline by maintaining functional connectivity in important neural networks.

Reference: 

Miller, K.J. et al. 2012. Memory Improves With Extended Use of Computerized Brain Fitness Program Among Older Adults. Presented August 3 at the 2012 convention of the American Psychological Association.

Han, S.D. et al. 2012. Cognitive Activity and Resources Are Associated With PCC Functional Connectivity in Older Adults. Presented August 3 at the 2012 convention of the American Psychological Association.

Related News

A study in which 64 sedentary older adults (aged 60-88) participated in a 12-week exercise program found that those who engaged in high-intensity interval training (HIIT) saw an improvement of up to 30% in memory performance while participants who engaged in moderate-intensity aerobic exercise s

A study involving 30 previously physically inactive older adults (aged 61-88) found that a three-month exercise program reversed some brain atrophy.

A long-running study following 387 Australian women found that regular exercise in middle age was the best lifestyle change they could make to prevent cognitive decline in their later years.

A large study, involving nearly 14,000 older adults (50+) participating in the 2006 Health and Retirement Study, found that weaker handgrip strength was associated with a greater risk of developing cognitive impairment, especially severe impairment, over the eight-year study period.

Data from the long-running Rush Memory and Aging Project, involving 960 participants who completed a food frequency questionnaire from 2004 to 2013, found that those who ate one daily serving of green, leafy vegetables had a slower rate of cognitive decline than people who rarely or never ate th

A study involving 99 healthy older adults found that levels of monounsaturated fatty acids were associated with cognitive performance and the organization of the brain's attention network.

Data from 915 older adults (mean age 81.4) participating in the very long-running Rush Memory and Aging Project, has found that those who reported eating seafood less than once a week showed greater cognitive decline compared to those who ate at least one seafood meal per week.

Data from the Canadian Longitudinal Study on Aging, involving 8,574 middle-aged and older adults (aged 45-85), has found that those who ate more vegetables and fruits and more nuts and pulses (such as lentils and beans) scored higher on tests of verbal fluency.

Analysis of data from the Age-Related Eye Disease Study (AREDS) and AREDS2, involving a total of around 8,000 older adults, has found that those with the greatest adherence to the Mediterranean diet had the lowest risk of cognitive impairment.

A 10-year study involving 19,887 middle-aged and older Americans, who completed surveys every two years about their health and lifestyle, has found that those who had a drink or two a day tended to show less cognitive decline, compared to non-drinkers.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news