Lifestyle

Poor sleep drives Alzheimer’s progression

  • Getting a good night’s sleep is given greater importance with the discovery that sleep deprivation appears to rapidly increase the spread of tau tangles.

Poor sleep has been associated with the development of Alzheimer's disease, and this has been thought to be in part because the protein amyloid beta increases with sleep deprivation. A new study explains more.

Experiments with mice show that sleep deprivation also rapidly increases levels of the other key Alzheimer’s disease protein, tau tangles.

The work built on findings that tau is high in older people who sleep poorly, and that, when people are kept awake all night, their tau levels rise by about 50%.

When mice had tau proteins seeded in the hippocampus of their brains, those who were kept awake for long periods each day (mice are nocturnal), showed significantly greater spread of tau tangles than those mice allowed to sleep normally. Moreover, the new tangles appeared in the same areas of the brain affected in people with Alzheimer’s.

Disrupted sleep also increased release of synuclein protein, a hallmark of Parkinson’s disease. People with Parkinson’s—like those with Alzheimer’s—often have sleep problems.

All of this supports the idea that sleep directly protects against the development of Alzheimer's.

https://www.futurity.org/alzheimers-disease-sleep-tau-1966962/

Reference: 

Source: 

Topics: 

tags development: 

tags problems: 

Poor sleep in older adults may increase Alzheimer’s risk

  • Older people who spend less time in slow-wave sleep (deep sleep) have higher levels of the Alzheimer’s brain protein tau.

Poor sleep has been associated with Alzheimer's disease risk, but a new study suggests a specific aspect of sleep is important.

The study, involving 119 older adults (60+), of whom 80% were cognitively normal and the remainder very mildly impaired, found that decreased slow-wave sleep coincided with higher levels of tau in the brain and a higher tau-to-amyloid ratio in the cerebrospinal fluid.

Amyloid plaques and tau tangles develop for decades before cognitive symptoms of dementia emerge. Identifying the process at an early stage offers a possible window of opportunity for successful intervention.

Participants’ sleep at home was monitored over the course of a normal week, and participants also kept sleep logs of nighttime sleep and daytime napping. Thirty-eight people underwent PET brain scans for amyloid-beta and tau proteins, and 104 people underwent spinal taps to provide cerebrospinal fluid. Twenty-seven did both.

Those with increased tau pathology actually slept more, during both night and day, but their quality of sleep was poorer. In fact, daytime napping alone was significantly associated with high levels of tau, making it a useful indicator of risk.

https://www.futurity.org/alzheimers-disease-sleep-1954732/

Reference: 

Topics: 

tags development: 

tags lifestyle: 

tags problems: 

Lifestyle changes can prevent cognitive decline even in genetically at-risk individuals

  • A large study indicates that lifestyle changes, together with advice and support for managing vascular health, can help prevent cognitive decline even in carriers of the Alzheimer's gene.

A Finnish study involving over 1000 older adults suggests that a counselling program can prevent cognitive decline even among those with the Alzheimer’s gene.

The study involved 1,109 older adults (aged 60-77) of whom 362 were carriers of the APOE4 gene. Some of the participants received regular lifestyle counselling (general health advice), while the rest received “enhanced” lifestyle counselling, involving nutrition counselling, physical and cognitive exercises, and support in managing the risk of cardiovascular diseases.

Earlier findings from the FINGER (Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability) trial showed that the regular lifestyle counselling group had a significantly increased risk of cognitive and functional impairment compared to the group receiving enhanced counselling. This analysis shows that this holds true even for those with the Alzheimer's gene, and indeed, might even be more helpful for carriers of the risky gene.

The findings emphasize the importance of early prevention strategies that target multiple modifiable risk factors simultaneously.

https://www.eurekalert.org/pub_releases/2018-01/uoef-lcp012518.php

Reference: 

Source: 

Topics: 

tags development: 

tags lifestyle: 

Muscular strength linked to brain health & cognitive function

  • A study of nearly half a million people has revealed that muscular strength is associated with brain health and cognitive performance, including among schizophrenics.

A British study using data from 475,397 participants has shown that, on average, stronger people performed better across every test of brain functioning used. Tests looked at reaction speed, reasoning, visuospatial memory, prospective memory, and working memory (digit span). The relationship between muscular strength and brain function was consistently strong in both older and younger adults (those under 55 and those over), contradicting previous research showing it only in older adults.

The study also found that maximal handgrip was strongly correlated with both visuospatial memory and reaction time in 1,162 people with schizophrenia (prospective memory also approached statistical significance).

The finding raises the intriguing possibility that weight training could be particularly beneficial for people with mental health conditions, such as schizophrenia, major depression and bipolar disorder.

https://www.eurekalert.org/pub_releases/2018-04/nwsu-rrs041918.php

Full text available online at https://doi.org/10.1093/schbul/sby034

Reference: 

Source: 

Topics: 

tags lifestyle: 

tags memworks: 

Greater muscle strength = better cognitive function

  • While handgrip strength has been linked to dementia risk in the elderly, a new study indicates that less impaired or fragile older adults need upper and lower body strength tests — but that these, too, are correlated with cognitive function.

A Finnish study involving 338 older adults (average age 66) has found that greater muscle strength is associated with better cognitive function.

Muscle strength was measured utilising handgrip strength, three lower body exercises such as leg extension, leg flexion and leg press and two upper body exercises such as chest press and seated row.

Handgrip strength, easy to measure, has been widely used as a measure of muscle strength, and has been associated with dementia risk among the very old. However, in this study, handgrip strength on its own showed no association with cognitive function. But both upper body strength and lower body strength were independently associated with cognitive function.

It may be that handgrip strength is only useful for older, more cognitively impaired adults.

These are gender-specific associations — muscle strength was significantly greater in men, but there was no difference in cognitive performance between men and women.

The finding is supported by previous research that found a link between walking speed and cognition in older adults, and by a 2015 study that found a striking correlation between leg power and cognition.

This 10-year British study involved 324 older female twins (average age 55). Both the degree of cognitive decline over the ten year period, and the amount of gray matter, was significantly correlated with high muscle fitness (measured by leg extension muscle power). The correlation was greater than for any other lifestyle factor tested

https://www.eurekalert.org/pub_releases/2017-06/uoef-gms062617.php

Reference: 

Source: 

Topics: 

tags development: 

tags lifestyle: 

tags problems: 

Brain tissue structure could explain link between fitness and memory

  • Brain scans of healthy young adults found that higher aerobic fitness was associated with greater hippocampal elasticity, which was a better predictor of cognitive performance than hippocampal volume.

A new MRI technique has revealed that it is the structural integrity of the hippocampus more than its size that reflects fitness and correlates with cognitive performance.

Research has focused on hippocampal size because it is easier to measure, and in children and older adults there are strong correlations between hippocampal size and memory. But this is less true for healthy, young adults. This new, subtler, technique reveals that something else is going on — something that has probably been masked by the effects of size in older adults (whose hippocampi are shrinking) and younger children (whose brains are still growing).

The technique measures viscoelasticity. If the hippocampus is more elastic, memory is better. When it’s more viscous, memory is worse. Those with better aerobic fitness had better hippocampal elasticity.

https://www.eurekalert.org/pub_releases/2017-05/uoia-bts050117.php

Reference: 

Source: 

Topics: 

tags development: 

tags lifestyle: 

Both aerobic exercise & strength training improves older brains

  • A review of research has confirmed the benefits of at least moderate exercise to fight age-related cognitive decline, with different benefits for aerobic exercise and strength training.

A review of 39 studies investigating the effect of exercise on cognition in older adults (50+) confirms that physical exercise does indeed improve cognitive function in the over 50s, regardless of their cognitive status. Aerobic exercise, resistance training, multicomponent training and tai chi, all had significant effects. However, exercise sessions needed to be at least 45  minutes and moderate intensity. Because aerobic exercise and resistance training had different effects (aerobic exercise helped overall cognition, while resistance training was particularly beneficial for executive function and working memory), it’s recommended that an exercise program include both.

https://medicalxpress.com/news/2017-04-aerobic-resistance-combo-boost-brain.html

Reference: 

Source: 

Topics: 

tags development: 

tags lifestyle: 

tags problems: 

Even a single exercise session helps your brain

  • A review of research has concluded that even a single bout of physical activity can have significant positive effects on people's mood and cognitive functions.

An extensive review of research looking at the effects of a single bout of exercise has concluded that:

  • the most consistent behavioral effects of acute exercise are
    • improved executive function
    • enhanced mood
    • decreased stress levels
  • widespread brain areas and brain systems are activated

Executive functions include attention, working memory, problem solving, cognitive flexibility, verbal fluency, decision making, and inhibitory control.

These positive changes have been demonstrated to occur with very low to very high exercise intensities, with effects lasting for up to two hours after the end of the exercise bout.

While brainwaves are all enhanced across the brain, hippocampal theta brainwaves are particularly enhanced by exercise, and the effects of this suggest that exercise particularly helps with tasks that depend on hippocampal-prefrontal interactions. Exercise also helps increase blood flow to the frontal regions.

One of the most dramatic effects of exercise is on neurochemical levels, including neurotransmitters and growth factors (such as BDNF).

https://www.eurekalert.org/pub_releases/2017-06/ip-cas061217.php

Reference: 

Topics: 

tags lifestyle: 

Aerobic exercise preserves brain volume and improves cognition in those with MCI

  • Regular exercise has been found to reduce brain shrinkage in those with mild cognitive impairment.

A study involving 35 adults with MCI found that those who exercised four times a week over a six-month period increased their volume of gray matter. But those who participated in aerobic exercise experienced significantly greater gains than those who just stretched, who also showed signs of white matter loss.

Aerobic activity included treadmill, stationary bike or elliptical training.

The study was presented at the annual meeting of the Radiological Society of North America (RSNA) in November, 2016.

https://www.eurekalert.org/pub_releases/2016-11/rson-aep111716.php

Topics: 

tags development: 

tags lifestyle: 

tags problems: 

Exercise might help your vision

  • A small study found that low-intensity exercise significantly boosted activation in the visual cortex above what occurred during rest or high-intensity exercise.

A study involving 18 volunteers who performed a simple orientation discrimination while on a stationary bicycle, has found that low-intensity exercise boosted activation in the visual cortex, compared with activation levels when at rest or during high-intensity exercise.

The changes suggest that the neurons in the visual cortex were most sensitive to the orientation stimuli during the low-intensity exercise condition relative to the other conditions. It’s suggested that this reflects an evolutionary pressure for the visual system to be more sensitive when the individual is actively exploring the environment (as opposed to, say, running away).

http://www.futurity.org/vision-exercise-brains-1400422-2/

Reference: 

[4274] Bullock, T., Elliott J. C., Serences J. T., & Giesbrecht B.
(2016).  Acute Exercise Modulates Feature-selective Responses in Human Cortex.
Journal of Cognitive Neuroscience. 29(4), 605 - 618.

Source: 

Topics: 

tags lifestyle: 

tags memworks: 

Pages

Subscribe to RSS - Lifestyle