Lifestyle

Physical activity linked to better brain health & cognition in older adults

  • A study found that older adults remembered names better after moderately intense exercise.
  • A large, long-running study found that each hour of light physical activity per week was linked to less brain atrophy.
  • Similarly, another long-running study reported that higher levels of lifestyle physical activity were associated with less brain atrophy.

Exercise activates brain networks in older adults

A study involving healthy older adults (55-85) found that recall was better after a session of moderately intense exercise, and several crucial brain regions showed greater activation.

The recall task involved identifying famous names and non famous ones. The test occurred 30 minutes after the exercise session (using an exercise bike) and on a separate day after a period of rest.

Brain activation while correctly remembering names was significantly greater in the hippocampus, middle frontal gyrus, inferior temporal gryus, middle temporal gyrus, and fusiform gyrus.

https://www.eurekalert.org/pub_releases/2019-04/uom-eam042419.php

Light, physical activity reduces brain aging

Data from the Framingham Heart Study has found that each additional hour spent in light-intensity physical activity was associated with higher brain volumes, equivalent to approximately 1.1 years less brain aging.

https://www.eurekalert.org/pub_releases/2019-04/buso-lpa041719.php

https://www.theguardian.com/science/2019/apr/19/household-chores-keep-brain-young-research-suggests

Everyday physical activities linked to more gray matter in brains of older adults

Data from 262 older adults (mean age 81) in the long-running Rush's Memory and Aging Project, found that higher levels of lifestyle physical activity (e.g., house cleaning, dog-walking, gardening, as well as exercise) are associated with more gray matter.

Participants wore an accelerometer continuously for seven to ten days, in order to accurately measure the frequency, duration and intensity of a participant's activities.

The association between physical activity and gray matter volumes remained after further controlling for age, gender, education levels, body mass index and symptoms of depression.

https://www.eurekalert.org/pub_releases/2018-02/rumc-eaa021318.php

Reference: 

Source: 

Topics: 

tags development: 

tags lifestyle: 

Brain benefits from single workouts predict long-term benefits from exercise

  • A small study has shown that those who show the biggest brain benefits after a single exercise session also show the biggest long-term gains from a training program.

A small pilot study, in which participants had brain scans and working memory tests before and after single sessions of light and moderate intensity exercise and after a 12-week long training program, has shown that immediate cognitive effects from exercise mirror long-term ones. Participants who saw the biggest improvements in cognition and functional brain connectivity after single sessions of moderate-intensity physical activity also showed the biggest long-term gains in cognition and connectivity.

The finding suggests that the brain changes observed after a single workout study can be a biomarker of sorts for long-term training.

https://www.eurekalert.org/pub_releases/2019-03/cns-eau032219.php

Reference: 

The findings were presented by Michelle Voss at the Cognitive Neuroscience Society (CNS) in San Francisco, March 23-26, 2019.

Source: 

Topics: 

tags lifestyle: 

tags memworks: 

Mouse studies link physical exercise to increased synapses

  • A mouse study has found that a hormone released during physical activity protects synapses in the hippocampus.
  • Another mouse study found that short bursts of exercise promotes an increase in synapses in the hippocampus.

How exercise may protect against Alzheimer's

Previous research uncovered a hormone called irisin that is released into the circulation during physical activity, and appeared to play a role in energy metabolism. Mice studies have now found that irisin protected memory and synapses in the brain — disabling irisin in the hippocampus resulted in synapses and memory weakening; boosting brain levels of irisin improved synapses and memory.

Mice who swam nearly every day for five weeks didn’t develop memory impairment despite getting infusions of beta amyloid — however, blocking irisin completely eliminated the benefits of swimming.

Samples from brain banks have confirmed that irisin is present in the human hippocampus and that hippocampal levels of the hormone are reduced in those with Alzheimer's.

https://www.eurekalert.org/pub_releases/2019-02/cuim-hem020819.php

Short bouts of exercise prime the brain for learning

A mouse study found that short-term bursts of exercise (equivalent to a game of pickup basketball, or 4,000 steps) activated a gene (Mtss1L) that promotes an increase in synapses in the hippocampus — which primes the brain for learning.

https://www.eurekalert.org/pub_releases/2019-07/ohs-sra070219.php

Reference: 

Lourenco, M. V., Frozza, R. L., de Freitas, G. B., Zhang, H., Kincheski, G. C., Ribeiro, F. C., … De Felice, F. G. (2019). Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer’s models. Nature Medicine, 25(1), 165–175. https://doi.org/10.1038/s41591-018-0275-4

Chatzi, C., Zhang, Y., Hendricks, W. D., Chen, Y., Schnell, E., Goodman, R. H., & Westbrook, G. L. (2019). Exercise-induced enhancement of synaptic function triggered by the inverse BAR protein, Mtss1L. ELife, 8, e45920. https://doi.org/10.7554/eLife.45920

Source: 

Topics: 

tags lifestyle: 

Potential link between vitamin D deficiency & loss of brain plasticity

  • A mouse study suggests that vitamin D deficiency impairs cognition through its effect on neuronal connections in the hippocampus.

A mouse study helps explain why vitamin D is so important for cognition. After 20 weeks of no vitamin D, the healthy adult mice showed a significant decline in their ability to remember and learn. They also showed a pronounced reduction in perineuronal nets in the hippocampus. These nets provide a supportive scaffold around certain neurons, stabilising their connections with other neurons. There was also a substantial reduction in both the number and strength of connections between neurons.

It’s suggested that vitamin D helps keep perineuronal nets stable, and that when vitamin D levels drop, they’re more easily degraded by enzymes. The hippocampus may be most vulnerable, and thus affected first. It also seems that the right hippocampus is more affected than the left.

https://www.eurekalert.org/pub_releases/2019-02/uoq-plb021919.php

Reference: 

Mayne, P. E., & Burne, T. H. J. (2019). Vitamin D in Synaptic Plasticity, Cognitive Function, and Neuropsychiatric Illness. Trends in Neurosciences, 42(4), 293–306. https://doi.org/10.1016/j.tins.2019.01.003

Source: 

Topics: 

tags lifestyle: 

Sleep problems linked to age-related cognitive problems

  • A very large Canadian study found that older adults with chronic insomnia performed significantly worse on cognitive tests.
  • A small study links older adults' increasing difficulties with consolidating memories to poorer synchronization of brainwaves during sleep.
  • A fruitful study shows that oxidative stress drives sleep, and that this is regulated by a specific molecule that monitors the degree of oxidative stress.

Chronic insomnia linked to memory problems

Data from 28,485 older Canadians (45+) found that those with chronic insomnia performed significantly worse on cognitive tests than those who had symptoms of insomnia without any noticable impact on their daytime functioning and those with normal sleep quality. The main type of memory affected was declarative memory (memory of concepts, events and facts).

Chronic insomnia is characterized by trouble falling asleep or staying asleep at least three nights a week for over three months with an impact on daytime functioning (mood, attention, and daytime concentration).

https://www.eurekalert.org/pub_releases/2019-05/cu-cia051519.php

Poor brainwave syncing behind older adults failure to consolidate memories

We know that memories are consolidated during sleep, and that for some reason this consolidation becomes more difficult with age. Now a new study shows why.

To consolidate memories (move them into long-term storage), low and speedy brain waves have to sync up at exactly the right moment during sleep. These brain rhythms synchronize perfectly in young adults, but in old age, it seems, slow waves during non-rapid eye movement (NREM) sleep are not so good at making timely contact with the speedy electrical bursts known as “spindles.”

These difficulties are thought to be due to atrophy of the gray matter in the medial frontal cortex.

The study compared the overnight memory of 20 healthy young adults to that of 32 healthy older adults (mostly in their 70s). Before going to sleep, participants learned and were then tested on 120 word sets. They were tested again in the morning. EEG results from their sleeping brains showed that in older people, the spindles consistently peaked early in the memory-consolidation cycle and missed syncing up with the slow waves.

http://www.futurity.org/memories-sleep-older-adults-1633432/

https://www.eurekalert.org/pub_releases/2017-12/uoc--obd121417.php

Oxidative stress governs sleep

A fruitfly study has shown how oxidative stress leads to sleep. Fruitflies (and, it is believed, humans) have sleep-control neurons that act like an on-off switch: if the neurons are electrically active, the fly is asleep; when they are silent, the fly is awake. The switch is triggered, it appears, by an electrical current that flows through two ion channels, and this, it now appears, is regulated by a small molecule called NADPH.

The state of NADPH reflects the degree of oxidative stress. Sleeplessness causes oxidative stress, driving the behavior of NADPH.

I'm wildly speculating here, but is it possible that increased sleep problems often found with age are linked to a growing inability of this molecule to sensitively monitor the degree of oxidative stress, perhaps due to high levels of oxidative stress??

https://www.eurekalert.org/pub_releases/2019-03/uoo-saa032119.php

Reference: 

Source: 

Topics: 

tags development: 

tags lifestyle: 

tags memworks: 

tags problems: 

More studies linking poor sleep to Alzheimer's risk

  • Adults whose sleep quality declined in their 40s and 50s had more amyloid-beta in their brains later in life, while those reporting poorer sleep in their 50s and 60s had more tau tangles.
  • Greater tau protein was associated with less synchronized brainwaves during sleep.
  • Both amyloid-beta and tau levels increase dramatically after a single night of sleep deprivation, suggesting good sleep helps remove these proteins.
  • A large study found that older adults who consistently slept more than nine hours every night had twice the risk of developing dementia and Alzheimer’s disease within the next 10 years.
  • A large Japanese study found that those with sleep durations of less than 5 hours or more than 10 hours were more likely to develop dementia. However, those with short sleep could mitigate the effect with high physical activity.
  • A largish 12-year study found that poorer REM sleep was associated with an increased dementia risk.
  • Sleep apnea has been linked to higher levels of tau in the entorhinal cortex, poorer attention and memory, and slower processing speed.
  • Those with the APOE4 gene may be particularly vulnerable to the ill effects of sleep apnea.

Disrupted sleep in one's 50s, 60s raises Alzheimer's risk

A study involving 95 healthy older adults found that adults reporting a decline in sleep quality in their 40s and 50s had more amyloid-beta in their brains later in life, while those reporting poorer sleep in their 50s and 60s had more tau tangles. Those with high levels of tau protein were more likely to lack the synchronized brain waves during deep NREM sleep that are associated with a good night's sleep, and the more tau protein, the less synchronized these brain waves were.

Previous research has found that a dip in the amplitude of slow wave activity during deep NREM sleep was associated with higher amounts of beta-amyloid in the brain and memory impairment.

https://www.eurekalert.org/pub_releases/2019-06/uoc--dsi062619.php

Studies of healthy animals and humans have reported higher levels of amyloid beta after a single night of sleep deprivation, and that disruption of slow-wave sleep causes amyloid beta levels to rise as much as 30%. Moreover, a single night’s sleep deprivation has been found to increase tau levels by as much as 50% in cerebrospinal fluid.

These findings suggest that quality sleep helps the body clear excess amyloid and tau proteins.

https://www.eurekalert.org/pub_releases/2019-03/aps-spa032119.php

A preliminary study involving 20 healthy subjects aged 22 to 72 found beta-amyloid increases of about 5% after losing a night of sleep.

Many researchers believe the link between sleep disorders and Alzheimer's risk is "bidirectional," since elevated beta-amyloid may also lead to sleep disturbances.

https://www.eurekalert.org/pub_releases/2018-04/nioa-los041318.php

A very small study involving eight people aged 30-60, who experienced (over time) two or three different sleep situations, found that amyloid beta levels were 25-30% higher when individuals had a a sleepless night — putting those amyloid beta levels on par with the levels seen in people genetically predisposed to develop Alzheimer’s at a young age.

http://www.futurity.org/sleep-alzheimers-amyloid-beta-1642332/

A sleep study involving 17 healthy adults aged 35 to 65, found that those whose slow-wave sleep was disrupted (by a beeping sound that moved them into a shallower sleep) found a 10% increase in amyloid beta levels after a single night of interrupted sleep, but no corresponding increase in tau levels. However, participants whose activity monitors showed they had slept poorly at home for the week before showed a spike in levels of tau.

http://www.futurity.org/sleep-alzheimers-proteins-1485152-2/

https://www.theguardian.com/science/2017/jul/10/poor-sleep-increases-risk-of-alzheimers-research-reveals

Is too much sleep an early sign of dementia?

Data from 2,457 older adults (65+) in the Framingham study found that those who consistently slept more than nine hours every night had twice the risk of developing dementia and Alzheimer’s disease within the next 10 years, compared to those who slept less than nine hours a night.

Over the 10-year study period, 234 were diagnosed with dementia.

It’s suggested that one reason might be that those with depression tend to sleep longer. In any case, it’s thought that the longer sleep sessions reflect something else going on, rather than being a cause.

Education level also affected the degree of risk. Those without a high school degree who slept more than nine hours nightly had a 600% greater risk of later receiving a dementia diagnosis than people with a high school degree.

http://www.futurity.org/too-much-sleep-dementia-1439122/

Optimal sleep linked to lower dementia risk

A ten-year Japanese study involving 1,517 older adults (60+) found that dementia rates were higher in those with daily sleep duration of less than 5 hours or more than 10 hours, compared with those with daily sleep duration of 5-6.9 hours. However, those with short sleep duration who had high physical activity did not have a greater risk of dementia.

294 participants (19%) developed dementia in the 10 year period.

https://www.eurekalert.org/pub_releases/2018-06/w-osl060518.php

Lack of REM sleep linked to higher dementia risk

A study involving 321 older adults (60+; average age 67), who participated in a sleep study between 1995 and 1998, found poorer REM sleep was associated with an increased risk of developing dementia over 12 years.

During that period, 32 people were diagnosed with some form of dementia (24 with Alzheimer’s)

Those who developed dementia spent an average of 17% of their sleep time in REM sleep, compared with 20% for those who didn’t develop dementia. For every percent that REM sleep was reduced, there was a 9% increase in dementia risk, and an 8% increase in Alzheimer’s risk specifically.

No such associations were found for other stages of sleep, although that shouldn’t be taken to mean that other sleep stages don’t affect key features of Alzheimer’s.

http://www.futurity.org/rem-sleep-dementia-risk-1524842/

Sleep apnea linked to higher tau levels

A study involving 288 cognitively healthy older adults (65+) found that those who had sleep apneas had on average 4.5% higher levels of tau in the entorhinal cortex than those who did not have apneas, after controlling for several other factors that could affect levels of tau in the brain, such as age, sex, education, cardiovascular risk factors and other sleep complaints.

15% (43 participants) were reported by their bed partners as having sleep apneas.

This preliminary study was presented at the American Academy of Neurology's 71st Annual Meeting in Philadelphia, May 4-10, 2019.

https://www.eurekalert.org/pub_releases/2019-03/aaon-sam022619.php

Data from 1,752 older adults found that sleep-disordered breathing was associated with poorer attention and processing speed. In particular, increased overnight hypoxemia (oxygen saturation below 90%) was linked with poorer attention and memory, and more daytime sleepiness associated with poorer attention and memory and slower cognitive processing speed.

These associations were strongest in APOE-ε4 carriers.

https://www.eurekalert.org/pub_releases/2017-07/ats-sdm071817.php

Reference: 

[4468] Winer, J. R., Mander B. A., Helfrich R. F., Maass A., Harrison T. M., Baker S. L., et al.
(2019).  Sleep as a Potential Biomarker of Tau and β-Amyloid Burden in the Human Brain.
Journal of Neuroscience. 39(32), 6315 - 6324.

[4469] Ning, S., & Jorfi M.
(2019).  Beyond the sleep-amyloid interactions in Alzheimer’s disease pathogenesis.
Journal of Neurophysiology. 122(1), 1 - 4.

[4413] Shokri-Kojori, E., Wang G-J., Wiers C. E., Demiral S. B., Guo M., Kim S. Won, et al.
(2018).  β-Amyloid accumulation in the human brain after one night of sleep deprivation.
Proceedings of the National Academy of Sciences. 115(17), 4483 - 4488.

[4470] Lucey, B. P., Hicks T. J., McLeland J. S., Toedebusch C. D., Boyd J., Elbert D. L., et al.
(2018).  Effect of sleep on overnight cerebrospinal fluid amyloid β kinetics.
Annals of Neurology. 83(1), 197 - 204.

[4471] Ju, Y-E. S., Ooms S. J., Sutphen C., Macauley S. L., Zangrilli M. A., Jerome G., et al.
(2017).  Slow wave sleep disruption increases cerebrospinal fluid amyloid-β levels.
Brain. 140(8), 2104 - 2111.

[4438] Westwood, A. J., Beiser A., Jain N., Himali J. J., DeCarli C., Auerbach S. H., et al.
(2017).  Prolonged sleep duration as a marker of early neurodegeneration predicting incident dementia.
Neurology. 88(12), 1172.

[4473] Ohara, T., Honda T., Hata J., Yoshida D., Mukai N., Hirakawa Y., et al.
(2018).  Association Between Daily Sleep Duration and Risk of Dementia and Mortality in a Japanese Community.
Journal of the American Geriatrics Society. 66(10), 1911 - 1918.

[4474] Pase, M. P., Himali J. J., Grima N. A., Beiser A. S., Satizabal C. L., Aparicio H. J., et al.
(2017).  Sleep architecture and the risk of incident dementia in the community.
Neurology. 89(12), 1244.

[4472] Johnson, D. A., Lane J., Wang R., Reid M., Djonlagic I., Fitzpatrick A. L., et al.
(2017).  Greater Cognitive Deficits with Sleep-disordered Breathing among Individuals with Genetic Susceptibility to Alzheimer Disease. The Multi-Ethnic Study of Atherosclerosis.
Annals of the American Thoracic Society. 14(11), 1697 - 1705.

 

Topics: 

tags lifestyle: 

tags problems: 

Smoking, hypertension, diabetes & obesity each linked to poor brain health

  • A large study has found that smoking, high blood pressure, diabetes, and obesity are each linked to more brain atrophy, and damage to white matter.
  • The more of these you have, the greater the shrinkage and damage.

Brain scans of 9,772 people aged 44 to 79, who were enrolled in the UK Biobank study, have revealed that smoking, high blood pressure, high pulse pressure, diabetes, and high BMI — but not high cholesterol — were all linked to greater brain shrinkage, less grey matter and less healthy white matter.

Smoking, high blood pressure, and diabetes were the most important factors, but there was also a compound effect, with the number of vascular risk factors being associated with greater damage to the brain. On average, those with the highest vascular risk had nearly 3% less volume of grey matter, and one-and-a-half times the damage to their white matter, compared to people who had the lowest risk.

The brain regions affected were mainly those involved in ‘higher-order’ thinking, and those known to be affected early in the development of dementia.

The associations were as strong for middle-aged adults as for older ones, suggesting the importance of tackling these factors early.

While the effect size was small, the findings emphasize how vulnerable the brain is to vascular factors even in relatively healthy adults. This also suggests the potential of lifestyle changes for fighting cognitive decline.

Although this study didn't itself examine cognitive performance in its participants, other studies have shown links between cognitive impairment and vascular risk factors, particularly diabetes, obesity, hypertension, and smoking.

https://www.eurekalert.org/pub_releases/2019-03/esoc-shb030719.php

Cognitive decline in type 2 diabetes linked to white matter hyperintensities

While type 2 diabetes has been associated with cognitive problems, the mechanism has been unclear. Now a study involving 93 people with type 2 diabetes has found that greater white matter hyperintensities (indicative of cerebral small vessel disease) were associated with decreased processing speed (but not with memory or executive function).

https://www.eurekalert.org/pub_releases/2018-09/w-rem091818.php

Reference: 

Cox, Simon R. et al. 2019. Associations between vascular risk factors and brain MRI indices in UK Biobank. European Heart Journal. doi:10.1093/eurheartj/ehz100

[4395] Mankovsky, B., Zherdova N., van den Berg E., Biessels G.-J., & de Bresser J.
(2018).  Cognitive functioning and structural brain abnormalities in people with Type 2 diabetes mellitus.
Diabetic Medicine. 35(12), 1663 - 1670.

 

Topics: 

tags development: 

tags lifestyle: 

tags problems: 

Air pollution substantially reduces cognitive ability in older adults

  • A very large study shows that greater exposure to air pollution was linked to poorer cognitive performance in older adults, especially men and the less educated.

A large Chinese study involving 20,000 people has found that the longer people were exposed to air pollution, the worse their cognitive performance in verbal and math tests. The effect of air pollution on verbal tests became more pronounced with age, especially for men and the less educated.

The study followed the participants from 2010 to 2014, meaning that the same individuals could be assessed as air pollution varied from one year to the next.

The findings add to previous research showing the harmful effects of air pollution on cognitive performance in children.

https://www.theguardian.com/environment/2018/aug/27/air-pollution-causes-huge-reduction-in-intelligence-study-reveals

Reference: 

Xin Zhang, Xi Chen, Xiaobo Zhang. 2018. The impact of exposure to air pollution on cognitive performance. Proceedings of the National Academy of Sciences Sep 2018, 115 (37) 9193-9197; DOI: 10.1073/pnas.1809474115

 

Source: 

Topics: 

tags development: 

tags lifestyle: 

Even short periods of exercise help you learn and remember

  • A small study of young adults found that 10 minutes of light exercise improved memory for details and increased relevant brain activity.
  • Another study found that 15 minutes of more intense exercise after learning a new motor skill resulted in better skill performance a day later.

Ten minutes of light exercise boosts memory

Following rat studies, a study involving 36 healthy young adults has found that 10 minutes of light exercise (such as tai chi, yoga, or walking) significantly improved highly detailed memory processing and resulted in increased activity in the hippocampus.

It also boosted connectivity between the hippocampus and cortical regions that support detailed memory processing (parahippocampal, angular, and fusiform gyri), and the degree of improvement in this connectivity predicted the extent of this memory improvement for an individual.

The memory task involved remembering details of pictures of objects from everyday life, some of which were very similar to other pictures, requiring participants to distinguish between the different memories.

Mood change was also assessed, and the researchers ruled out this as a cause of the improved memory.

https://www.theguardian.com/science/2018/sep/24/10-minutes-of-exercise-a-day-improves-memory

Exercise after learning helps you master new motor skills

Another recent study found that 15 minutes of cardiovascular exercise after learning a new motor skill resulted in better skill learning when tested a day later.

Exercise was also found to decrease desynchronization in beta brainwaves and increase their connectivity between hemispheres. The degree of improvement in skill learning reflected changes in beta-wave desynchronization. It appears that exercise helped the brain become more efficient in performing the skill.

The motor skill consisted of gripping an object akin to a gamers' joystick and using varying degrees of force to move a cursor up and down to connect red rectangles on a computer screen as quickly as possible.

Note that there was no difference between the two groups (those who exercised and those who didn’t) 8 hours after learning — the difference didn’t appear until after participants had slept. Sleep helps consolidate skill learning.

https://www.eurekalert.org/pub_releases/2018-07/mu-1oe071118.php

https://www.futurity.org/15-minutes-exercise-brain-motor-skills-1805322

Reference: 

Suwabe, K. 2018. Rapid stimulation of human dentate gyrus function with acute mild exercise. Proceedings of the National Academy of Sciences Oct 2018, 115 (41) 10487-10492; DOI: 10.1073/pnas.1805668115

[4398] Dal Maso, F., Desormeau B., Boudrias M-H., & Roig M.
(2018).  Acute cardiovascular exercise promotes functional changes in cortico-motor networks during the early stages of motor memory consolidation.
NeuroImage. 174, 380 - 392.

 

Topics: 

tags lifestyle: 

tags memworks: 

Sleep apnea linked to problems recalling specific autobiographical details

  • The connection between sleep apnea and depression may lie in a problem with autobiographical memory.

Obstructive sleep apnea (OSA) occurs when a person's breathing is interrupted during sleep.

People with OSA are known to suffer memory problems and also have higher rates of depression.

A new study connects the two by finding that people with untreated OSA had problems recalling specific details about their lives. Previous research has established that persistent depression is associated with overly general autobiographical memories, where people don't remember many specific details of life events.

It may be that sleep apnea impairs the ability to either encode or consolidate certain types of life memories.

The study, involvidng 44 adults with untreated OSA and 44 healthy age-matched controls (average age 49), found that those with OSA had significantly more overgeneral memories: 52.3% compared with 18.9% of the controls.

OSA participants also had significantly poorer semantic recall of early adult life (facts from your personal history, like the names of your school teachers).

Across both groups, being older was associated with having a higher number of overgeneral autobiographical memories while higher depression was linked to having worse semantic memory.

https://www.eurekalert.org/pub_releases/2019-01/ru-sac013119.php

Reference: 

Topics: 

tags lifestyle: 

tags memworks: 

tags problems: 

Pages

Subscribe to RSS - Lifestyle