Why our brains produce fewer new neurons in old age

August, 2011

New research explains why fewer new brain cells are created in the hippocampus as we get older.

It wasn’t so long ago we believed that only young brains could make neurons, that once a brain was fully matured all it could do was increase its connections. Then we found out adult brains could make new neurons too (but only in a couple of regions, albeit critical ones). Now we know that neurogenesis in the hippocampus is vital for some operations, and that the production of new neurons declines with age (leading to the idea that the reduction in neurogenesis may be one reason for age-related cognitive decline).

What we didn’t know is why this happens. A new study, using mice genetically engineered so that different classes of brain cells light up in different colors, has now revealed the life cycle of stem cells in the brain.

Adult stem cells differentiate into progenitor cells that ultimately give rise to mature neurons. It had been thought that the stem cell population remained stable, but that these stem cells gradually lose their ability to produce neurons. However, the mouse study reveals that during the mouse's life span, the number of brain stem cells decreased 100-fold. Although the rate of this decrease actually slows with age, and the output per cell (the number of progenitor cells each stem cell produces) increases, nevertheless the pool of stem cells is dramatically reduced over time.

The reason this happens (and why it wasn’t what we expected) is explained in a computational model developed from the data. It seems that stem cells in the brain differ from other stem cells. Adult stem cells in the brain wait patiently for a long time until they are activated. They then undergo a series of rapid divisions that give rise to progeny that differentiate into neurons, before ‘retiring’ to become astrocytes. What this means is that, unlike blood or gut stem cells (that renew themselves many times), brain stem cells are only used once.

This raises a somewhat worrying question: if we encourage neurogenesis (e.g. by exercise or drugs), are we simply using up stem cells prematurely? The researchers suggest the answer depends on how the neurogenesis has been induced. Parkinson's disease and traumatic brain injury, for example, activate stem cells directly, and so may reduce the stem cell population. However, interventions such as exercise stimulate the progenitor cells, not the stem cells themselves.

Reference: 

Related News

A review of 15 randomized controlled trials in which people with mild to moderate dementia were offered mental stimulation has concluded that such stimulation does indeed help slow down cognitive decline.

Data from 11,926 older twins (aged 65+) has found measurable cognitive impairment in 25% of them and subjective cognitive impairment in a further 39%, meaning that 64% of these older adults were experiencing some sort of cognitive impairment.

Another study adds to the evidence that changes in the brain that may lead eventually to Alzheimer’s begin many years before Alzheimer’s is diagnosed.

A ten-year study following 12,412 middle-aged and older adults (50+) has found that those who died after stroke had more severe memory loss in the years before stroke compared to those who survived stroke and those who didn't have a stroke.

A small study of the sleep patterns of 100 people aged 45-80 has found a link between sleep disruption and level of amyloid plaques (characteristic of Alzheimer’s disease).

Following on from research showing an association between lower walking speed and increased risk of dementia, and weaker hand grip strength and increased dementia risk, a large study has explored whether this association extends to middle-aged and younger-old adults.

New data from the ongoing validation study of the Alzheimer's Questionnaire (AQ), from 51 cognitively normal individuals (average age 78) and 47 aMCI individuals (average age 74), has found that the AQ is effective in identifying not only those with Alzheimer’s but also those older adults wi

In the study, 64 older adults (60-74; average 70) and 64 college students were compared on a word recognition task. Both groups first took a vocabulary test, on which they performed similarly. They were then presented with 12 lists of 15 semantically related words.

I have reported often on studies pointing to obesity as increasing your risk of developing dementia, and on the smaller evidence that calorie restriction may help fight age-related cognitive decline and dement

Openness to experience – being flexible and creative, embracing new ideas and taking on challenging intellectual or cultural pursuits – is one of the ‘Big 5’ personality traits. Unlike the other four, it shows some correlation with cognitive abilities.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news