Timing of hormone therapy critical for Alzheimer's risk

November, 2012

A large long-running study adds to evidence that the timing of hormone therapy is critical in deciding whether it reduces or increases the risk of developing Alzheimer’s.

It’s been unclear whether hormone therapy helps older women reduce their risk of Alzheimer’s or in fact increases the risk. To date, the research has been inconsistent, with observational studies showing a reduced risk, and a large randomized controlled trial showed an increased risk. As mentioned before, the answer to the inconsistency may lie in the timing of the therapy. A new study supports this view.

The 11-year study (part of the Cache County Study) involved 1,768 older women (65+), of whom 1,105 women had used hormone therapy (either estrogen alone or in combination with a progestin). During the study, 176 women developed Alzheimer's disease. This included 87 (7.9%) of the 1,105 women who had taken hormone therapy, and 89 (13.4%) of the 663 others.

Women who began hormone therapy, of any kind, within five years of menopause had a 30% lower risk of developing Alzheimer's within the study period (especially if they continued the therapy for 10 or more years). Those who began treatment more than five years after menopause, had a ‘normal’ risk (i.e., not reduced or increased). However, those who had started a combined therapy of estrogen and progestin when they were at least 65 years old had a significantly higher risk of developing Alzheimer’s.

The findings support the idea that the timing of hormone therapy, and the type, are critical factors, although the researchers cautiously note that more research is needed before they can make new clinical recommendations.

Reference: 

Related News

The first detailed characterization of the molecular structures of amyloid-beta fibrils that develop in the brains of those with Alzheimer's disease suggests that different molecular structures of amyloid-beta fibrils may distinguish the brains of Alzheimer's patients with different clinical his

A study involving mice lacking a master clock gene called Bmal1 has found that as the mice aged, their brains showed patterns of damage similar to those seen in Alzheimer's disease and other neurodegenerative disorders. Many of the injuries seemed to be caused by free radicals.

A new study involving 96 older adults initially free of dementia at the time of enrollment, of whom 12 subsequently developed mild Alzheimer’s, has clarified three fundamental issues about Alzheimer's: where it starts, why it starts there, and how it spreads.

Analysis of 5715 cases from the National Alzheimer's Coordinating Center (NACC) database has found that nearly 80% of more than 4600 Alzheimer's disease patients showed some degree of vascular pathology, compared with 67% of the controls, and 66% in the Parkinson's group.

The jugular venous reflux (JVR) occurs when the pressure gradient reverses the direction of blood flow in the veins, causing blood to leak backwards into the brain.

The

Following on from the evidence that Alzheimer’s brains show higher levels of metals such as iron, copper, and zinc, a mouse study has found that amyloid plaques in Alzheimer’s-like brains with significant neurodegeneration have about 25% more copper than those with little neurodegeneration.

An Italian study has found that a significant percentage of Alzheimer’s patients suffer from Obstructive Sleep Apnea Syndrome. This respiratory disorder, which causes people to temporarily stop breathing during their sleep, affects cerebral blood flow, promoting cognitive decline.

Data from 70 older adults (average age 76) in the Baltimore Longitudinal Study of Aging has found that those who reported poorer sleep (shorter sleep duration and lower sleep quality) showed a greater buildup of amyloid-beta plaques.

A new discovery helps explain why the “Alzheimer’s gene” ApoE4 is such a risk factor.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news