One cause of damage in older brains, and how exercise can help

September, 2011

Two mice studies indicate that an increase in a protein involved in immune response may be behind the reduced ability of older brains to create new neurons, and that exercise produces a protein that helps protect against damage caused by illness, injury, surgery and pollutants.

In the first mouse study, when young and old mice were conjoined, allowing blood to flow between the two, the young mice showed a decrease in neurogenesis while the old mice showed an increase. When blood plasma was then taken from old mice and injected into young mice, there was a similar decrease in neurogenesis, and impairments in memory and learning.

Analysis of the concentrations of blood proteins in the conjoined animals revealed the chemokine (a type of cytokine) whose level in the blood showed the biggest change — CCL11, or eotaxin. When this was injected into young mice, they indeed showed a decrease in neurogenesis, and this was reversed once an antibody for the chemokine was injected. Blood levels of CCL11 were found to increase with age in both mice and humans.

The chemokine was a surprise, because to date the only known role of CCL11 is that of attracting immune cells involved in allergy and asthma. It is thought that most likely it doesn’t have a direct effect on neurogenesis, but has its effect through, perhaps, triggering immune cells to produce inflammation.

Exercise is known to at least partially reverse loss of neurogenesis. Exercise has also been shown to produce chemicals that prevent inflammation. Following research showing that exercise after brain injury can help the brain repair itself, another mouse study has found that mice who exercised regularly produced interleukin-6 (a cytokine involved in immune response) in the hippocampus. When the mice were then exposed to a chemical that destroys the hippocampus, the interleukin-6 dampened the harmful inflammatory response, and prevented the loss of function that is usually observed.

One of the actions of interleukin-6 that brings about a reduction in inflammation is to inhibit tumor necrosis factor. Interestingly, I previously reported on a finding that inhibiting tumor necrosis factor in mice decreased cognitive decline that often follows surgery.

This suggests not only that exercise helps protect the brain from the damage caused by inflammation, but also that it might help protect against other damage, such as that caused by environmental toxins, injury, or post-surgical cognitive decline. The curry spice cucurmin, and green tea, are also thought to inhibit tumor necrosis factor.

Reference: 

Related News

As we all know, people are living longer and obesity is at appalling levels. For both these (completely separate!) reasons, we expect to see growing rates of dementia. A new analysis using data from the long-running Framingham Heart Study offers some hope to individuals, however.

A study involving 39 older adults has found that those randomly assigned to a “high-challenge” group showed improved cognitive performance and more efficient brain activity compared with those assigned to a low-challenge group, or a control group.

Data from 2,800 participants (aged 65+) in the Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) study has revealed that one type of cognitive training benefits less-educated people more than it does the more-educated.

A study involving 266 people with mild cognitive impairment (aged 70+) has found that B vitamins are more effective in slowing cognitive decline when people have higher omega 3 levels.

Growing research has implicated infections as a factor in age-related cognitive decline, but these have been cross-sectional (comparing different individuals, who will have a number of other, possibly confounding, attributes).

Another study adds to the growing evidence that a Mediterranean diet is good for the aging brain.

A two-year study which involved metabolic testing of 50 people, suggests that Alzheimer's disease consists of three distinct subtypes, each one of which may need to be treated differently. The finding may help explain why it has been so hard to find effective treatments for the disease.

A study involving both mice and human cells adds to evidence that stress is a risk factor for Alzheimer's.

Data from 23,572 Americans from the Reasons for Geographic and Racial Differences in Stroke (REGARDS) study has revealed that those who survived a stroke went on to have significantly faster rates of cognitive decline as they aged.

A study involving 382 older adults (average age 75) followed for around five years, has found that those who don’t get enough vitamin D may experience cognitive decline at a much faster rate than people who have adequate vitamin D.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news