Video game training benefits cognition in some older adults

April, 2012

A study has found that playing a cognitively complex video game improved cognitive performance in some older adults, particularly those with initially poorer cognitive scores.

A number of studies have found evidence that older adults can benefit from cognitive training. However, neural plasticity is thought to decline with age, and because of this, it’s thought that the younger-old, and/or the higher-functioning, may benefit more than the older-old, or the lower-functioning. On the other hand, because their performance may already be as good as it can be, higher-functioning seniors may be less likely to benefit. You can find evidence for both of these views.

In a new study, 19 of 39 older adults (aged 60-77) were given training in a multiplayer online video game called World of Warcraft (the other 20 formed a control group). This game was chosen because it involves multitasking and switching between various cognitive abilities. It was theorized that the demands of the game would improve both spatial orientation and attentional control, and that the multiple tasks might produce more improvement in those with lower initial ability compared to those with higher ability.

WoW participants were given a 2-hour training session, involving a 1-hour lecture and demonstration, and one hour of practice. They were then expected to play the game at home for around 14 hours over the next two weeks. There was no intervention for the control group. All participants were given several cognitive tests at the beginning and end of the two week period: Mental Rotation Test; Stroop Test; Object Perspective Test; Progressive Matrices; Shipley Vocabulary Test; Everyday Cognition Battery; Digit Symbol Substitution Test.

As a group, the WoW group improved significantly more on the Stroop test (a measure of attentional control) compared to the control group. There was no change in the other tests. However, those in the WoW group who had performed more poorly on the Object Perspective Test (measuring spatial orientation) improved significantly. Similarly, on the Mental Rotation Test, ECB, and Progressive Matrices, those who performed more poorly at the beginning tended to improve after two weeks of training. There was no change on the Digit Symbol test.

The finding that only those whose performance was initially poor benefited from cognitive training is consistent with other studies suggesting that training only benefits those who are operating below par. This is not really surprising, but there are a few points that should be made.

First of all, it should be noted that this was a group of relatively high-functioning young-old adults — poorer performance in this case could be (relatively) better performance in another context. What it comes down to is whether you are operating at a level below which you are capable of — and this applies broadly, for example, experiments show that spatial training benefits females but not males (because males tend to already have practiced enough).

Given that, in expertise research, training has an on-going, apparently limitless, effect on performance, it seems likely that the limited benefits shown in this and other studies is because of the extremely limited scope of the training. Fourteen hours is not enough to improve people who are already performing adequately — but that doesn’t mean that they wouldn’t improve with more hours. I have yet to see any interventions with older adults that give them the amount of cognitive training you would expect them to need to achieve some level of mastery.

My third and final point is the specific nature of the improvements. This has also been shown in other studies, and sometimes appears quite arbitrary — for example, one 3-D puzzle game apparently improved mental rotation, while a different 3-D puzzle game had no effect. The point being that we still don’t understand the precise attributes needed to improve different skills (although the researchers advocate the use of a tool called cognitive task analysis for revealing the underlying qualities of an activity) — but we do understand that it is a matter of precise attributes, which is definitely a step in the right direction.

The main thing, then, that you should take away from this is the idea that different activities involve specific cognitive tasks, and these, and only these, will be the ones that benefit from practicing the activities. You therefore need to think about what tasks you want to improve before deciding on the activities to practice.

Reference: 

Related News

A study in which 64 sedentary older adults (aged 60-88) participated in a 12-week exercise program found that those who engaged in high-intensity interval training (HIIT) saw an improvement of up to 30% in memory performance while participants who engaged in moderate-intensity aerobic exercise s

A study involving 30 previously physically inactive older adults (aged 61-88) found that a three-month exercise program reversed some brain atrophy.

A long-running study following 387 Australian women found that regular exercise in middle age was the best lifestyle change they could make to prevent cognitive decline in their later years.

A large study, involving nearly 14,000 older adults (50+) participating in the 2006 Health and Retirement Study, found that weaker handgrip strength was associated with a greater risk of developing cognitive impairment, especially severe impairment, over the eight-year study period.

Data from the long-running Rush Memory and Aging Project, involving 960 participants who completed a food frequency questionnaire from 2004 to 2013, found that those who ate one daily serving of green, leafy vegetables had a slower rate of cognitive decline than people who rarely or never ate th

A study involving 99 healthy older adults found that levels of monounsaturated fatty acids were associated with cognitive performance and the organization of the brain's attention network.

Data from 915 older adults (mean age 81.4) participating in the very long-running Rush Memory and Aging Project, has found that those who reported eating seafood less than once a week showed greater cognitive decline compared to those who ate at least one seafood meal per week.

Data from the Canadian Longitudinal Study on Aging, involving 8,574 middle-aged and older adults (aged 45-85), has found that those who ate more vegetables and fruits and more nuts and pulses (such as lentils and beans) scored higher on tests of verbal fluency.

Analysis of data from the Age-Related Eye Disease Study (AREDS) and AREDS2, involving a total of around 8,000 older adults, has found that those with the greatest adherence to the Mediterranean diet had the lowest risk of cognitive impairment.

A 10-year study involving 19,887 middle-aged and older Americans, who completed surveys every two years about their health and lifestyle, has found that those who had a drink or two a day tended to show less cognitive decline, compared to non-drinkers.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news