How blood flow is controlled in the brain

  • A study shows that blood is stored in the blood vessels in the space between the brain and skull, and its flow  is closely linked to the flow of cerebrospinal fluid in and out of the brain's ventricles.
  • A second study shows that capilleries, the smallest blood vessels in the brain, monitor the flow of blood within the brain and actively direct it to the areas that need it the most.

Increases in brain activity are matched by increases in blood flow. Neurons require a huge amount of energy, but can’t store it themselves, so must rely on blood to deliver the nutrients they need.

Two new studies help explain how blood flow is controlled.

The first study found blood appears to be stored in the blood vessels in the space between the brain and skull.

When the heart pumps blood into cranium, only a fraction of it flows into the capillaries that infuse the brain. The arteries in the cranium expand to store the excess blood. This expansion pushes out cerebrospinal fluid into the spinal column. When the heart relaxes, the drop in the pressure pushing blood through the arteries causes them to contract and the blood is pushed into the brain's capillaries. This in turn forces used blood out of the brain into the veins between it and the skull. These cerebral veins expand to store this blood as it leaves the brain.

Crucially, the study shows that the flow of blood in the veins leading out of the cranium is closely linked to the flow of cerebrospinal fluid in and out of the brain's ventricles.

The second study looked at what happens further down the track.

It had been thought that capillaries were passive tubes and the arterioles were the source of action — but the area covered by capillaries vastly surpasses the area covered by arterioles. So new findings make sense: that capillaries actively control blood flow by acting like a series of wires, transmitting electrical signals to direct blood to the areas that need it most.

To do this, capillaries rely on a protein (an ion channel) that detects increases in potassium during neuronal activity. Increased activity of this channel facilitates the flow of ions across the capillary membrane, thereby creating a small electrical current that communicates the need for additional blood flow to the arterioles, resulting in increased blood flow to the capillaries.

If the potassium level is too high, however, this mechanism can be disabled. This may be involved in a broad range of brain disorders.

https://www.eurekalert.org/pub_releases/2017-05/lbu-ffi050217.php

https://www.eurekalert.org/pub_releases/2017-03/lcom-ei032417.php

Reference: 

Related News

A number of studies, principally involving rodents, have established that physical exercise stimulates the creation of new brain cells in the

Over the years, I have reported on several studies that have found evidence that colorful berries — blueberries in particular (but I think that’s more of an artifact, due to the relative cheapness of these berries in North America) — benefit older b

Genetic analysis of 9,232 older adults (average age 67; range 56-84) has implicated four genes in how fast your

A number of studies have found evidence that older adults can benefit from cognitive training.

Previous research has pointed to a typical decline in our sense of control as we get older. Maintaining a sense of control, however, appears to be a key factor in successful aging.

A study involving 1,575 older adults (aged 58-76) has found that those with DHA levels in the bottom 25% had smaller brain volume (equivalent to about 2 years of aging) and greater amounts of

Data from 11,926 older twins (aged 65+) has found measurable cognitive impairment in 25% of them and subjective cognitive impairment in a further 39%, meaning that 64% of these older adults were experiencing some sort of cognitive impairment.

Another study adds to the evidence that changes in the brain that may lead eventually to Alzheimer’s begin many years before Alzheimer’s is diagnosed.

A ten-year study following 12,412 middle-aged and older adults (50+) has found that those who died after stroke had more severe memory loss in the years before stroke compared to those who survived stroke and those who didn't have a stroke.

A small study of the sleep patterns of 100 people aged 45-80 has found a link between sleep disruption and level of amyloid plaques (characteristic of Alzheimer’s disease).

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news