How blood flow is controlled in the brain

  • A study shows that blood is stored in the blood vessels in the space between the brain and skull, and its flow  is closely linked to the flow of cerebrospinal fluid in and out of the brain's ventricles.
  • A second study shows that capilleries, the smallest blood vessels in the brain, monitor the flow of blood within the brain and actively direct it to the areas that need it the most.

Increases in brain activity are matched by increases in blood flow. Neurons require a huge amount of energy, but can’t store it themselves, so must rely on blood to deliver the nutrients they need.

Two new studies help explain how blood flow is controlled.

The first study found blood appears to be stored in the blood vessels in the space between the brain and skull.

When the heart pumps blood into cranium, only a fraction of it flows into the capillaries that infuse the brain. The arteries in the cranium expand to store the excess blood. This expansion pushes out cerebrospinal fluid into the spinal column. When the heart relaxes, the drop in the pressure pushing blood through the arteries causes them to contract and the blood is pushed into the brain's capillaries. This in turn forces used blood out of the brain into the veins between it and the skull. These cerebral veins expand to store this blood as it leaves the brain.

Crucially, the study shows that the flow of blood in the veins leading out of the cranium is closely linked to the flow of cerebrospinal fluid in and out of the brain's ventricles.

The second study looked at what happens further down the track.

It had been thought that capillaries were passive tubes and the arterioles were the source of action — but the area covered by capillaries vastly surpasses the area covered by arterioles. So new findings make sense: that capillaries actively control blood flow by acting like a series of wires, transmitting electrical signals to direct blood to the areas that need it most.

To do this, capillaries rely on a protein (an ion channel) that detects increases in potassium during neuronal activity. Increased activity of this channel facilitates the flow of ions across the capillary membrane, thereby creating a small electrical current that communicates the need for additional blood flow to the arterioles, resulting in increased blood flow to the capillaries.

If the potassium level is too high, however, this mechanism can be disabled. This may be involved in a broad range of brain disorders.

https://www.eurekalert.org/pub_releases/2017-05/lbu-ffi050217.php

https://www.eurekalert.org/pub_releases/2017-03/lcom-ei032417.php

Reference: 

Related News

A large study, involving 3,690 older adults, has found that drugs with strong anticholinergic effects cause memory and cognitive impairment when taken continuously for a mere two months.

A new study has found that errors in perceptual decisions occurred only when there was confused sensory input, not because of any ‘noise’ or randomness in the cognitive processing.

Evidence is accumulating that age-related cognitive decline is rooted in three related factors: processing speed slows down (because of

Analysis of data from 418 older adults (70+) has found that carriers of the ‘Alzheimer’s gene’, APOEe4, were 58% more likely to develop mild cognitive impairment compared to non-carriers.

Data from the very large, long-running UK National Child Development Study has revealed that those who exercised at least four times weekly as both a child and an adult performed better on cognitive tests at age 50 than those who exercised two to three times per month or less, and the latter

A small study of “Super Agers” has found a key difference between them and typical older adults: an unusually large

Preliminary findings from a small study show that older adults (68-91), after learning to use Facebook, performed about 25% better on tasks designed to measure their ability to continuously monitor and to quickly add or delete the contents of their

Recent research has suggested that sleep problems might be a risk factor in developing Alzheimer’s, and in mild cognitive impairment.

The issue of the effect of menopause on women’s cognition, and whether hormone therapy helps older women fight cognitive decline and dementia, has been a murky one. Increasing evidence suggests that the timing and type of therapy is critical.

I’ve written before about the gathering evidence that sensory impairment, visual impairment and hearing loss in particular, is a risk factor for age-related cognitive decline and dementia.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news