Exercise reduces Alzheimer's damage in brain

August, 2012

A mouse study provides more support for the value of exercise in preventing Alzheimer’s disease, and shows one of the ways in which it does so.

A study designed to compare the relative benefits of exercise and diet control on Alzheimer’s pathology and cognitive performance has revealed that while both are beneficial, exercise is of greater benefit in reducing Alzheimer’s pathology and cognitive impairment.

The study involved mice genetically engineered with a mutation in the APP gene (a familial risk factor for Alzheimer’s), who were given either a standard diet or a high-fat diet (60% fat, 20% carbohydrate, 20% protein vs 10% fat, 70% carbohydrate, 20% protein) for 20 weeks (from 2-3 to 7-8 months of age). Some of the mice on the high-fat diet spent the second half of that 20 weeks in an environmentally enriched cage (more than twice as large as the standard cage, and supplied with a running wheel and other objects). Others on the high-fat diet were put back on a standard diet in the second 10 weeks. Yet another group were put on a standard diet and given an enriched cage in the second 10 weeks.

Unsurprisingly, those on the high-fat diet gained significantly more weight than those on the standard diet, and exercise reduced that gain — but not as much as diet control (i.e., returning to a standard diet) did. Interestingly, this was not the result of changes in food intake, which either stayed the same or slightly increased.

More importantly, exercise and diet control were roughly equal in reversing glucose intolerance, but exercise was more effective than diet control in ameliorating cognitive impairment. Similarly, while amyloid-beta pathology was significantly reduced in both exercise and diet-control conditions, exercise produced the greater reduction in amyloid-beta deposits and level of amyloid-beta oligomers.

It seems that diet control improves metabolic disorders induced by a high-fat diet — conditions such as obesity, hyperinsulinemia and hypercholesterolemia — which affects the production of amyloid-beta. However exercise is more effective in tackling brain pathology directly implicated in dementia and cognitive decline, because it strengthens the activity of an enzyme that decreases the level of amyloid-beta.

Interestingly, and somewhat surprisingly, the combination of exercise and diet control did not have a significantly better effect than exercise alone.

The finding adds to the growing pile of evidence for the value of exercise in maintaining a healthy brain in later life, and helps explain why. Of course, as I’ve discussed on several occasions, we already know other mechanisms by which exercise improves cognition, such as boosting neurogenesis.

Reference: 

Related News

Data from 11,926 older twins (aged 65+) has found measurable cognitive impairment in 25% of them and subjective cognitive impairment in a further 39%, meaning that 64% of these older adults were experiencing some sort of cognitive impairment.

Another study adds to the evidence that changes in the brain that may lead eventually to Alzheimer’s begin many years before Alzheimer’s is diagnosed.

A ten-year study following 12,412 middle-aged and older adults (50+) has found that those who died after stroke had more severe memory loss in the years before stroke compared to those who survived stroke and those who didn't have a stroke.

A small study of the sleep patterns of 100 people aged 45-80 has found a link between sleep disruption and level of amyloid plaques (characteristic of Alzheimer’s disease).

Following on from research showing an association between lower walking speed and increased risk of dementia, and weaker hand grip strength and increased dementia risk, a large study has explored whether this association extends to middle-aged and younger-old adults.

New data from the ongoing validation study of the Alzheimer's Questionnaire (AQ), from 51 cognitively normal individuals (average age 78) and 47 aMCI individuals (average age 74), has found that the AQ is effective in identifying not only those with Alzheimer’s but also those older adults wi

In the study, 64 older adults (60-74; average 70) and 64 college students were compared on a word recognition task. Both groups first took a vocabulary test, on which they performed similarly. They were then presented with 12 lists of 15 semantically related words.

I have reported often on studies pointing to obesity as increasing your risk of developing dementia, and on the smaller evidence that calorie restriction may help fight age-related cognitive decline and dement

Openness to experience – being flexible and creative, embracing new ideas and taking on challenging intellectual or cultural pursuits – is one of the ‘Big 5’ personality traits. Unlike the other four, it shows some correlation with cognitive abilities.

I’ve spoken before about the association between hearing loss in old age and dementia risk.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news