Cognitive decline begins in middle age

February, 2012

A large ten-year study of middle-aged to older adults (45-70) has found that cognitive decline begins in the 45-55 decade, with reasoning ability the most affected by age.

The age at which cognitive decline begins has been the subject of much debate. The Seattle longitudinal study has provided most of the evidence that it doesn’t begin until age 60. A more recent, much larger study that allows both longitudinal and cross-sectional analysis suggests that, depressingly, mid-to-late forties might be closer to the mark.

A long-term British study known as Whitehall II began in 1985, when all civil servants aged 35-55 in 20 London-based departments were invited to participate. In 1997-9, 5198 male and 2192 female civil servants, aged 45-70 at this point, were given the first of three rounds of cognitive testing. The second round took place in 2002-4, and the third in 2007-9.

Over these ten years, all cognitive scores except vocabulary declined in all five age categories (45-49, 50-54, 55-59, 60-64, and 65-70 at baseline). Unsurprisingly, the decline was greater with increasing age, and greatest for reasoning. Men aged 45-9 at baseline showed a 3.6% decline in reasoning, compared to a 9.6% decline for those aged 65-70. Women were less affected by age: while showing the same degree of decline when younger, the oldest showed a 7.4% decline.

None of the other cognitive tasks showed the same age-related deterioration as reasoning, which displayed a consistently linear decline with advancing age. The amount of decline over ten years was roughly similar for each age group for short-term memory and phonemic and semantic fluency (although the women displayed more variability in memory, in a somewhat erratic pattern which may perhaps reflect hormonal changes — I’m speculating here). Moreover, the amount of decline in each decade for these functions was only about the same as reasoning’s decline in the younger decades — about -4% in each decade.

Men and women differed significantly in education (33% of men attended university compared to 21% of women; 57% of women never finished secondary school compared to 39% of men). It is therefore unsurprising that men performed significantly better on all cognitive tests except memory (noting that the actual differences in score were mostly quite small: 16.9/35 vs 16.5 for phonemic fluency; 16.7/35 vs 15.8 for semantic fluency; 25.7/33 vs 23.1 for vocabulary; 48.7/65 vs 41.6 for reasoning).

The cognitive tests included a series of 65 verbal and mathematical reasoning items of increasing difficulty (testing inductive reasoning), a 20-word free recall test (short-term verbal memory), recalling as many words as possible beginning with “S” (phonemic fluency) and recalling members of the animal category (semantic fluency), and a multi-choice vocabulary test.

The design of the study allowed both longitudinal and cross-sectional analyses to be carried out. Cross-sectional data, although more easily acquired, has been criticized as conflating age effects with cohort differences. Generations differ on several relevant factors, of which education is the most obvious. The present study semi-confirmed this, finding that cross-sectional data considerably over-estimated cognitive decline in women but not men — reflecting the fact that education changed far more for women than men in the relevant time periods. For example, in the youngest group of men, 30% had less than a secondary school education and 42% had a university degree, and the women showed a similar pattern, with 34% and 40%. However, for those aged 55-59 at baseline, the corresponding figures were 38% and 29% for men compared to 58% and 17% for women.

The principal finding is of course that measurable cognitive decline was evident in the youngest group, meaning that at some point during that 45-55 decade, cognitive faculties begin to decline. Of course, it should be emphasized that this is a group effect — individuals will vary in the extent and timing of any cognitive decline.

(A side-note: During the ten year period, 305 participants died. The probability of dying was higher in those with poorer cognitive scores at baseline.)

Reference: 

Related News

A new study, involving 1,219 dementia-free older adults (65+), has found that the more omega-3 fatty acids the person consumed, the lower the level of beta-amyloid in the blood (a proxy for brain levels).

Here’s a different aspect to

More findings from the long-running Mayo Clinic Study of Aging reveal that using a computer plus taking moderate exercise reduces your risk of mild cognitive impairment significantly more than you would expect from simply adding together these two beneficial activities.

The study involved 4,134 people (average age 59) who worked at the French national gas and electric company, of whom most worked at the company for their entire career.

I’ve mentioned before that, for some few people, exercise doesn’t seem to have a benefit, and the benefits of exercise for fighting age-related cognitive decline may not apply to those carrying the Alzheimer’s gene.

Data from the Women's Health Study, involving 6,183 older women (65+), has found that it isn’t the amount of fat but the type of fat that is associated with cognitive decline.

Interpreting brain activity is a very tricky business. Even the most basic difference can be interpreted in two ways — i.e., what does it mean if a region is more active in one group of people compared to another?

Damage to the retina (retinopathy) doesn’t produce noticeable symptoms in the early stages, but a new study indicates it may be a symptom of more widespread damage. In the ten-year study, involving 511 older women (average age 69), 7.6% (39) were found to have retinopathy.

Older adults who sleep poorly react to stress with increased inflammation

Data from the very large and long-running Cognitive Function and Ageing Study, a U.K. study involving 13,004 older adults (65+), from which 329 brains are now available for analysis, has found that cognitive lifestyle score (CLS) had no effect on Alzheimer’s pathology.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news