Coffee helps prevent progression to dementia

July, 2012

A 4-year study of older adults has found that low levels of caffeine were linked to MCI progressing to dementia, apparently by mediating lower levels of anti-inflammatory proteins.

Following on from mouse studies, a human study has investigated whether caffeine can help prevent older adults with mild cognitive impairment from progressing to dementia.

The study involved 124 older adults (65-88) who were thoroughly cognitively assessed, given brain scans, and had a fasting blood sample taken. They were then followed for 2 to 4 years, during which their cognitive status was re-assessed annually. Of the 124 participants, 69 (56%) were initially assessed as cognitively normal (average age 73), 32 (26%) with MCI (average age 76.5), and 23 (19%) with dementia (average age 77). The age differences were significant.

Those with MCI on initial assessment showed significantly lower levels of caffeine in their blood than those cognitively healthy; levels in those with dementia were also lower but not significantly. Those initially healthy who developed MCI over the study period similarly showed lower caffeine levels than those who didn’t develop MCI, but again, due to the wide individual variability (and the relatively small sample size), this wasn’t significant. However, among those with MCI who progressed to dementia (11, i.e. a third of those with MCI), caffeine levels were so much lower that the results were significant.

This finding revealed an apparently critical level of caffeine dividing those who progressed to dementia and those who did not — more specifically, all of those who progressed to dementia were below this level, while around half of those who remained stable were at the level or above. In other words, low caffeine would seem to be necessary but not sufficient.

On the other hand (just to show that this association is not as simple as it appears), those already with dementia had higher caffeine levels than those with MCI who progressed to dementia.

The critical factor may have to do with three specific cytokines — GCSF, IL-10, and IL-6 — which all showed markedly lower levels in those converting from MCI to dementia. Comparison of the three stable-MCI individuals with the highest caffeine levels and the three with the lowest levels, and the three from the MCI-to-dementia group with comparable low levels, revealed that high levels of those cytokines were matched with high caffeine levels, while, in both groups, low caffeine levels were matched to low levels of those cytokines.

These cytokines are associated with inflammation — an established factor in cognitive decline and dementia.

The level of coffee needed to achieve the ‘magic’ caffeine level is estimated at around 3 cups a day. While caffeine can be found in other sources, it is thought that in this study, as in the mouse studies, coffee is the main source. Moreover, mouse research suggests that caffeine is interacting with an as yet unidentified component of coffee to boost levels of these cytokines.

This research has indicated that caffeine has several beneficial effects on the brain, including suppressing levels of enzymes that produce amyloid-beta, as well as these anti-inflammatory effects.

It’s suggested that the reason high levels of caffeine don’t appear to benefit those with dementia is because higher levels of these cytokines have become re-established, but this immune response would appear to come too late to protect the brain. This is consistent with other evidence of the importance of timing.

Do note that in mouse studies, the same benefits were not associated with decaffeinated coffee.

While this study has some limitations, the findings are consistent with previous epidemiologic studies indicating coffee/caffeine helps protect against cognitive impairment and dementia. Additionally, in keeping with the apparent anti-inflammatory action, a long-term study tracking the health and coffee consumption of more than 400,000 older adults recently found that coffee drinkers had reduced risk of dying from heart disease, lung disease, pneumonia, stroke, diabetes, infections, injuries and accidents.

Reference: 

Cao, C., Loewenstein, D. a, Lin, X., Zhang, C., Wang, L., Duara, R., Wu, Y., et al. (2012). High Blood Caffeine Levels in MCI Linked to Lack of Progression to Dementia. Journal of Alzheimer’s disease : JAD, 30(3), 559–72. doi:10.3233/JAD-2012-111781

Freedman, N.D. et al. 2012. Association of Coffee Drinking with Total and Cause-Specific Mortality. N Engl J Med, 366, 1891-1904.

Related News

The latest finding from the large, long-running Health, Aging, and Body Composition (Health ABC) Study adds to the evidence that preventing or controlling diabetes helps prevent age-related cognitive decline.

A review of three high quality trials comparing the putative benefits of omega-3 fatty acids for preventing age-related cognitive decline, has concluded that there is no evidence that taking fish oil supplements helps fight cognitive decline.

While the ‘Alzheimer’s gene’ is relatively common — the ApoE4 mutation is present in around 15% of the population — having two copies of the mutation is, thankfully, much rarer, at around 2%.

Dementia is a progressive illness, and its behavioral and psychological symptoms are, for caregivers, the most difficult symptoms to manage.

A study designed to compare the relative benefits of exercise and diet control on Alzheimer’s pathology and cognitive performance has revealed that while both are beneficial, exercise is of greater benefit in reducing Alzheimer’s pathology and cognitive impairment.

I have reported previously on research suggesting that rapamycin, a bacterial product first isolated from soil on Easter Island and used to help transplant patients prevent organ rejection, might improve learning and memory.

A study involving those with a strong genetic risk of developing Alzheimer’s has found that the first signs of the disease can be detected 25 years before symptoms are evident.

A number of studies have come out in recent years linking age-related cognitive decline and dementia risk to inflammation and infection (put inflammation into the “Search this site” box at the top of the page and you’ll see what I mean). New research suggests one important mechanism.

I’ve reported before on the evidence suggesting that carriers of the ‘Alzheimer’s gene’, APOE4, tend to have smaller brain volumes and perform worse on cognitive tests, despite being cognitively ‘normal’.

A new study, involving 1,219 dementia-free older adults (65+), has found that the more omega-3 fatty acids the person consumed, the lower the level of beta-amyloid in the blood (a proxy for brain levels).

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news