Children with autism have distinctive patterns of brain activity

December, 2010

An imaging study has found three different brain signatures discriminating children with autistic spectrum disorders, siblings of children with ASD, and other typically-developing children.

Last month I reported on a finding that toddlers with autism spectrum disorder showed a strong preference for looking at moving shapes rather than active people. This lower interest in people is supported by a new imaging study involving 62 children aged 4-17, of whom 25 were diagnosed with autistic spectrum disorder and 20 were siblings of children with ASD.

In the study, participants were shown point-light displays (videos created by placing lights on the major joints of a person and filming them moving in the dark). Those with ASD showed reduced activity in specific regions (right amygdala, ventromedial prefrontal cortex, right posterior superior temporal sulcus, left ventrolateral prefrontal cortex, and the fusiform gyri) when they were watching a point-light display of biological motion compared with a display of moving dots. These same regions have also been implicated in previous research with adults with ASD.

Moreover, the severity of social deficits correlated with degrees of activity in the right pSTS specifically. More surprisingly, other brain regions (left dorsolateral prefrontal cortex, right inferior temporal gyrus, and a different part of the fusiform gyri) showed reduced activity in both the siblings group and the ASD group compared to controls. The sibling group also showed signs of compensatory activity, with some regions (right posterior temporal sulcus and a different part of the ventromedial prefrontal cortex) working harder than normal.

The implications of this will be somewhat controversial, and more research will be needed to verify these findings.

Reference: 

[1987] Kaiser, M. D., Hudac C. M., Shultz S., Lee S. M., Cheung C., Berken A. M., et al.
(2010).  Neural signatures of autism.
Proceedings of the National Academy of Sciences.

Full text available at http://www.pnas.org/content/early/2010/11/05/1010412107.full.pdf+html

Related News

A twin study involving 457 pairs has found that ADHD on its own was associated with a reduced ability to inhibit responses to stimuli, while reading disabilities were associated independently with weaknesses on measures of phoneme awareness, verbal reasoning, and

A study involving 68 healthy older adults (65-85) has compared brain activity among four groups, determined whether or not they carry the Alzheimer’s gene ApoE4 and whether their physical activity is reported to be high or low.

While brain laterality exists widely among animal species, the strong dominance of right-handedness in humans is something of an anomaly.

Many genes have been implicated in autism; one of them is the CNTNAP2 gene.

Carriers of the so-called ‘Alzheimer’s gene’ (apoE4) comprise 65% of all Alzheimer's cases. A new study helps us understand why that’s true.

‘Face-blindness’ — prosopagnosia — is a condition I find fascinating, perhaps because I myself have a touch of it (it’s now recognized that this condition represents the end of a continuum rather than being an either/or proposition).

Analysis of DNA and lifestyle data from a representative group of 2,500 U.S.

Neurofibromatosis type 1 (NF1) is the most common cause of learning disabilities, caused by a mutation in a gene that makes a protein called neurofibromin.

It’s been suggested before that Down syndrome and Alzheimer's are connected. Similarly, there has been evidence for connections between diabetes and Alzheimer’s, and cardiovascular disease and Alzheimer’s. Now new evidence shows that all of these share a common disease mechanism.

No surprise to me (I’m hopeless at faces), but a twin study has found that face recognition is heritable, and that it is inherited separately from IQ.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news