Hippocampal iron increased in Alzheimer's disease

The hippocampus is damaged early in Alzheimer’s, while the thalamus is generally unaffected until the late stages. Brain imaging of the hippocampus and the thalamus in 31 patients with Alzheimer's and 68 healthy controls has revealed increased levels of iron in the hippocampus of those with Alzheimer’s, but not in the thalamus. Moreover, this increased iron was associated with tissue damage in patients with Alzheimer's but not in the healthy older individuals.

The findings support the view that iron accumulation is a factor in the development of Alzheimer's disease. It’s theorized that the buildup of tau and amyloid-beta is a response to the destruction of myelin. Myelin, and the oligodendrocytes that produces it, have the highest levels of iron of any cells in the brain.

http://www.eurekalert.org/pub_releases/2013-08/uoc--uss082013.php

Raven, E.P. 2013. Increased Iron Levels and Decreased Tissue Integrity in Hippocampus of Alzheimer’s Disease Detected in vivo with Magnetic Resonance Imaging. Journal of Alzheimer’s Disease, 37 (1), 127-136

Related News

The first detailed characterization of the molecular structures of amyloid-beta fibrils that develop in the brains of those with Alzheimer's disease suggests that different molecular structures of amyloid-beta fibrils may distinguish the brains of Alzheimer's patients with different clinical his

A study involving mice lacking a master clock gene called Bmal1 has found that as the mice aged, their brains showed patterns of damage similar to those seen in Alzheimer's disease and other neurodegenerative disorders. Many of the injuries seemed to be caused by free radicals.

A new study involving 96 older adults initially free of dementia at the time of enrollment, of whom 12 subsequently developed mild Alzheimer’s, has clarified three fundamental issues about Alzheimer's: where it starts, why it starts there, and how it spreads.

Analysis of 5715 cases from the National Alzheimer's Coordinating Center (NACC) database has found that nearly 80% of more than 4600 Alzheimer's disease patients showed some degree of vascular pathology, compared with 67% of the controls, and 66% in the Parkinson's group.

The jugular venous reflux (JVR) occurs when the pressure gradient reverses the direction of blood flow in the veins, causing blood to leak backwards into the brain.

Following on from the evidence that Alzheimer’s brains show higher levels of metals such as iron, copper, and zinc, a mouse study has found that amyloid plaques in Alzheimer’s-like brains with significant neurodegeneration have about 25% more copper than those with little neurodegeneration.

An Italian study has found that a significant percentage of Alzheimer’s patients suffer from Obstructive Sleep Apnea Syndrome. This respiratory disorder, which causes people to temporarily stop breathing during their sleep, affects cerebral blood flow, promoting cognitive decline.

Data from 70 older adults (average age 76) in the Baltimore Longitudinal Study of Aging has found that those who reported poorer sleep (shorter sleep duration and lower sleep quality) showed a greater buildup of amyloid-beta plaques.

A new discovery helps explain why the “Alzheimer’s gene” ApoE4 is such a risk factor.

Analyses of cerebrospinal fluid from 15 patients with Alzheimer's disease, 20 patients with mild cognitive impairment, and 21 control subjects, plus brain tis

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news