Attention warps memory space

05/2013

A recent study reveals that when we focus on searching for something, regions across the brain are pulled into the search. The study sheds light on how attention works.

In the experiments, brain activity was recorded as participants searched for people or vehicles in movie clips. Computational models showed how each of the roughly 50,000 locations near the cortex responded to each of the 935 categories of objects and actions seen in the movie clips.

When participants searched for humans, relatively more of the cortex was devoted to humans, and when they searched for vehicles, more of the cortex was devoted to vehicles.

Now this might not sound very surprising, but it appears to contradict our whole developing picture of the brain as having specialized areas for specific categories — instead, areas normally involved in recognizing categories such as plants or buildings were being switched to become attuned to humans or vehicles. The changes occurred across the brain, not just in those regions devoted to vision, and in fact, the largest changes were seen in the prefrontal cortex.

What this suggests is that categories are represented in highly organized, continuous maps, a ‘semantic space’, as it were. By increasing the representation of the target category (and related categories) at the expense of other categories, this semantic space is changed. Note that this did not come about in response to the detection of the target; it occurred in response to the direction of attention — the goal setting.

In other words, in the same way that gravity warps the space-time continuum (well, probably not the exact same way!), attention warps your mental continuum.

You can play with an interactive online brain viewer which tries to portray this semantic space.

http://www.futurity.org/science-technology/to-find-whats-lost-brain-forms-search-party/

[3417] Çukur, T., Nishimoto S., Huth A. G., & Gallant J. L.
(2013).  Attention during natural vision warps semantic representation across the human brain.
Nature Neuroscience. advance online publication,

Related News

As many of you will know, I like nature-improves-mind stories.

Another study looking into the urban-nature effect issue takes a different tack than those I’ve previously reported on, that look at the attention-refreshing benefits of natural environments.

In my book on remembering intentions, I spoke of how quickly and easily your thoughts can be derailed, leading to ‘action slips’ and, in the wrong circumstances, catastrophic mistakes.

We know that emotion affects memory.

A review of 10 observational and four intervention studies as said to provide strong evidence for a positive relationship between physical activity and academic performance in young people (6-18).

I had to report on this quirky little study, because a few years ago I discovered Leonard Cohen’s gravelly voice and then just a few weeks ago had it trumped by Tom Waits — I adore these deep gravelly voices, but couldn’t say why.

I’ve always felt that better thinking was associated with my brain working ‘in a higher gear’ — literally working at a faster rhythm.

Previous research has found practice improves your ability at distinguishing visual images that vary along one dimension, and that this learning is specific to the visual images you train on and quite durable.

An increasing number of studies have been showing the benefits of bilingualism, both for children and in old age.

Here’s a perception study with an intriguing twist. In my recent round-up of perception news I spoke of how images with people in them were more memorable, and of how some images ‘jump out’ at you.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news