Older news items (pre-2010) brought over from the old website
December 2009
The importance of retrieval cues
An imaging study has revealed that it is retrieval cues that trigger activity in the hippocampus, rather than, as often argued, the strength of the memory. The study involved participants learning unrelated word pairs (a process which included making up sentences with the words), then being asked whether various familiar words had been previously seen or not — the words being shown first on their own, and then with their paired cue word. Brain activity for words judged familiar on their own was compared with activity for the same items when shown with context cues. Increased hippocampal activity occurred only with cued recall. Moreover, the amount of activity was not associated with familiarity strength, and recollected items were associated with greater activity relative to highly familiar items.
Cohn, M., Moscovitch, M., Lahat, A., & McAndrews, M. P. (2009). Recollection versus strength as the primary determinant of hippocampal engagement at retrieval. Proceedings of the National Academy of Sciences, 106(52), 22451-22455. doi: 10.1073/pnas.0908651106.
http://www.eurekalert.org/pub_releases/2009-12/uot-dik120709.php
Children’s PTSD symptoms linked to poor hippocampus function
An imaging study comparing brain activity during a verbal memory task of 16 10- to 17-year-olds who had PTSD symptoms with a control group of 11 young people, has found that while hippocampal activity was similar in both groups when the word list was presented, those with PTSD symptoms made more errors on the recall part of the test and showed less hippocampus activity than control subjects doing the same task. Additionally, those with the worst hippocampus function were also most likely to experience a specific set of PTSD symptoms — "avoidance and numbing", including difficulty remembering the trauma, feeling cut off from others and lack of emotion. The research helps explain why traumatized children behave as they do and could improve treatments.
Carrion, V. G., Haas, B. W., Garrett, A., Song, S., & Reiss, A. L. (2009). Reduced Hippocampal Activity in Youth with Posttraumatic Stress Symptoms: An fMRI Study. J. Pediatr. Psychol., jsp112. doi: 10.1093/jpepsy/jsp112.
http://www.eurekalert.org/pub_releases/2009-12/sumc-bis120309.php
Higher levels of leptin associated with lower risk of dementia
A new study has showed that higher levels of leptin—a hormone involved in fat metabolism and appetite—is linked to reduced risk of Alzheimer's disease. The study used data from the large long-running Framingham Heart Study, and found that higher leptin levels were not only associated with a dose-related lower incidence of dementia and Alzheimer’s, but also with higher total cerebral brain volume. The findings are consistent with recent evidence that leptin improves memory function through direct effects on the hippocampus. The strength of the association was striking (an Alzheimer’s risk of 25% for those with the lowest levels of leptin compared to 6% for those with the highest levels), and if confirmed will emphasize the role of lifestyle in preventing and treating Alzheimer’s.
Lieb, W., Beiser, A. S., Vasan, R. S., Tan, Z. S., Au, R., Harris, T. B., et al. (2009). Association of Plasma Leptin Levels With Incident Alzheimer Disease and MRI Measures of Brain Aging. JAMA, 302(23), 2565-2572. doi: 10.1001/jama.2009.1836.
http://www.eurekalert.org/pub_releases/2009-12/jaaj-hlo121009.php
http://www.eurekalert.org/pub_releases/2009-12/bumc-rfh121009.php
October 2009
High protein diet shrinks brain in Alzheimer’s mice
A study using genetically engineered mice has tested the effects of four diets for their effects on Alzheimer’s pathology: a regular diet, a high fat/low carbohydrate custom diet, a high protein/low carb version, or a high carbohydrate/low fat option. Unexpectedly, mice fed the high protein/low carbohydrate diet had brains 5% lighter that all the others, and regions of their hippocampus were less developed. Mice on the high fat diet had higher levels of amyloid-beta protein, although no effect on plaque burden was detected.
Franciosi, S., Gama Sosa, M., English, D., Oler, E., Oung, T., Janssen, W., et al. (2009). Novel cerebrovascular pathology in mice fed a high cholesterol diet. Molecular Neurodegeneration, 4(1), 42. doi: 10.1186/1750-1326-4-42.
Full text available at http://www.molecularneurodegeneration.com/content/4/1/40
http://www.eurekalert.org/pub_releases/2009-10/bc-arf101909.php
Why smells can be so memorable
Confirming the common experience of the strength with which certain smells can evoke emotions or memories, an imaging study has found that, when people were presented with a visual object together with one, and later with a second, set of pleasant and unpleasant odors and sounds, then presented with the same objects a week later, there was unique activation in particular brain regions in the case of their first olfactory (but not auditory) associations. This unique signature existed in the hippocampus regardless of how strong the memory was — that is, it was specific to olfactory associations. Regardless of whether they were smelled or heard, people remembered early associations more clearly when they were unpleasant.
The study appeared online on November 5 in Current Biology.
http://www.physorg.com/news176649240.html
Why sleep deprivation causes cognitive impairment, and how to fix it
A mouse study has found a molecular pathway in the brain that is the cause of cognitive impairment due to sleep deprivation, and points to a way of preventing the cognitive deficits caused by sleep deprivation. The study showed that mice deprived of sleep had increased levels of the enzyme phosphodiesterase 4 (PDE4) and reduced levels of cAMP, crucial in forming new synaptic connections in the hippocampus. Treatment with phosphodiesterase inhibitors rescued the sleep deprivation-induced deficits in cAMP signaling, synaptic plasticity and hippocampus-dependent memory, counteracting some of the memory consequences of sleep deprivation.
Vecsey, C. G., Baillie, G. S., Jaganath, D., Havekes, R., Daniels, A., Wimmer, M., et al. (2009). Sleep deprivation impairs cAMP signalling in the hippocampus. Nature, 461(7267), 1122-1125. doi: 10.1038/nature08488.
http://www.eurekalert.org/pub_releases/2009-10/uop-fsp102609.php
September 2009
Concepts are born in the hippocampus
Concepts are at the heart of cognition. A study showed 25 people pairs of fractal patterns that represented the night sky and asked them to forecast the weather – either rain or sun – based on the patterns. The task could be achieved by either working out the conceptual principles, or simply memorizing which patterns produced which effects. However, the next task required them to make predictions using new patterns (but based on the same principles). Success on this task was predictable from the degree of activity in the hippocampus during the first, learning, phase. In the second phase, the ventromedial prefrontal cortex, important in decision-making, was active. The results indicate that concepts are learned and stored in the hippocampus, and then passed on to the vMPFC for application.
Kumaran, D. et al. 2009. Tracking the Emergence of Conceptual Knowledge during Human Decision Making. Neuron, 63 (6), 889-901.
http://www.newscientist.com/article/dn17862-concepts-are-born-in-the-hippocampus
http://www.eurekalert.org/pub_releases/2009-09/cp-hwk091709.php
How sleep consolidates memory
A rat study provides clear evidence that "sharp wave ripples", brainwaves that occur in the hippocampus when it is "off-line", most often during stage four sleep, are responsible for consolidating memory and transferring the learned information from the hippocampus to the neocortex, where long-term memories are stored. The study found that when these waves were eliminated during sleep, the rats were less able to remember a spatial navigation task.
Girardeau, G. et al. 2009. Selective suppression of hippocampal ripples impairs spatial memory. Nature Neuroscience, 12 (10), 1222-1223.
http://www.eurekalert.org/pub_releases/2009-09/ru-deo091509.php
New insights into memory without conscious awareness
An imaging study in which participants were shown a previously studied scene along with three previously studied faces and asked to identify the face that had been paired with that scene earlier has found that hippocampal activity was closely tied to participants' tendency to view the associated face, even when they failed to identify it. Activity in the lateral prefrontal cortex, an area required for decision making, was sensitive to whether or not participants had responded correctly and communication between the prefrontal cortex and the hippocampus was increased during correct, but not incorrect, trials. The findings suggest that conscious memory may depend on interactions between the hippocampus and the prefrontal cortex.
Hannula, D.E. & Ranganath, C. 2009. The Eyes Have It: Hippocampal Activity Predicts Expression of Memory in Eye Movements. Neuron, 63 (5), 592-599.
http://www.eurekalert.org/pub_releases/2009-09/cp-ycb090309.php
Healthy older brains not significantly smaller than younger brains
A study using healthy older adults from Holland's long-term Maastricht Aging Study found that the 35 cognitively healthy people who stayed free of dementia showed no significant decline in gray matter, but the 30 people who showed substantial cognitive decline although still dementia-free showed a significant reduction in brain tissue in the hippocampus and parahippocampal areas, and in the frontal and cingulate cortices. The findings suggest that atrophy in the normal older brain may have been over-estimated in earlier studies, by not screening out people whose undetected, slowly developing brain disease was killing off cells in key areas.
Burgmans, S. et al. 2009. The Prevalence of Cortical Gray Matter Atrophy May Be Overestimated In the Healthy Aging Brain. Neuropsychology, 23 (5), 541-550.
http://www.eurekalert.org/pub_releases/2009-09/apa-hob090309.php
August 2009
Overweight and obese elderly have smaller brains
Analysis of brain scans from 94 people in their 70s who were still "cognitively normal" five years after the scan has revealed that people with higher body mass indexes had smaller brains on average, with the frontal and temporal lobes particularly affected (specifically, in the frontal lobes, anterior cingulate gyrus, hippocampus, and thalamus, in obese people, and in the basal ganglia and corona radiate of the overweight). The brains of the 51 overweight people were, on average, 6% smaller than those of the normal-weight participants, and those of the 14 obese people were 8% smaller. To put it in more comprehensible, and dramatic terms: "The brains of overweight people looked eight years older than the brains of those who were lean, and 16 years older in obese people." However, overall brain volume did not differ between overweight and obese persons. As yet unpublished research by the same researchers indicates that exercise protects these same brain regions: "The most strenuous kind of exercise can save about the same amount of brain tissue that is lost in the obese."
Raji, C.A. et al. 2009. Brain structure and obesity. Human Brain Mapping, Published Online: Aug 6 2009
http://www.newscientist.com/article/mg20327222.400-expanding-waistlines-may-cause-shrinking-brains
Alcoholics show abnormal brain activity when processing facial expressions
Excessive chronic drinking is known to be associated with deficits in comprehending emotional information, such as recognizing different facial expressions. Now an imaging study of abstinent long-term alcoholics has found that they show decreased and abnormal activity in the amygdala and hippocampus when looking at facial expressions. They also show increased activity in the lateral prefrontal cortex, perhaps in an attempt to compensate for the failure of the limbic areas. The finding is consistent with other studies showing alcoholics invoking additional and sometimes higher-order brain systems to accomplish a relatively simple task at normal levels. The study compared 15 abstinent long-term alcoholics and 15 healthy, nonalcoholic controls, matched on socioeconomic backgrounds, age, education, and IQ.
Marinkovic, K. et al. 2009. Alcoholism and Dampened Temporal Limbic Activation to Emotional Faces. Alcoholism: Clinical and Experimental Research, Published Online: Aug 10 2009
http://www.eurekalert.org/pub_releases/2009-08/ace-edc080509.php
http://www.eurekalert.org/pub_releases/2009-08/bumc-rfa081109.php
June 2009
Memories practiced throughout the day, not just while sleeping
It is known that a certain amount of replaying of experiences occurs in the hippocampus immediately afterwards, but it has been thought that this is confined to the immediate past, while the replaying that occurs during sleep and is thought to be part of the memory consolidation process, ranges far more widely. Now a new rat study indicates that the replaying that occurs while the animal is awake is more extensive than thought, and more accurate than that which occurs during sleep. Data from the neurons indicated that the events being replayed (repeatedly) were from 20 to 30 minutes earlier, and involved different settings, indicating the replay wasn’t dependent on incoming sensory cues. It’s suggested that the less-accurate replays seen during sleep are more aimed at making connections, rather than consolidating the actual experience. The waking replays occurred during pauses in activity, perhaps suggesting the importance of making pauses for reflection during your day!
Karlsson, M.P. & Frank, L.M. 2009. Awake replay of remote experiences in the hippocampus. Nature Neuroscience, 12, 913–918.
http://www.eurekalert.org/pub_releases/2009-06/uoc--mmb061109.php
Measuring brain atrophy in patients with mild cognitive impairment
A study involving 269 patients with mild cognitive impairment provides evidence that a fully automated procedure called Volumetric MRI (that can be done in a clinical setting) can accurately and quickly measure parts of the medial temporal lobe and compare them to expected size. It also found that not only atrophy in the hippocampus but also the amygdala is associated with a greater risk of conversion to Alzheimer’s.
Kovacevic, S. et al. 2009. High-throughput, Fully Automated Volumetry for Prediction of MMSE and CDR Decline in Mild Cognitive Impairment. Alzheimer Disease & Associated Disorders, 23 (2), 139-145.
http://www.eurekalert.org/pub_releases/2009-06/uoc--mba061609.php
May 2009
New insight into how information is encoded in the hippocampus
Theta brain waves are known to orchestrate neuronal activity in the hippocampus, and for a long time it’s been thought that these oscillations were "in sync" across the hippocampus, timing the firing of neurons like a sort of central pacemaker. A new rat study reveals that rather than being in sync, theta oscillations actually sweep along the length of the hippocampus as traveling waves. This changes our notion of how spatial information is represented in the rat brain (and presumably has implications for our brains: theta waves are ubiquitous in mammalian brains). Rather than neurons encoding points in space, it seems that what is encoded are segments of space. This would make it easier to distinguish between representations of locations from different times. It also may have significant implications for understanding how information is transmitted from the hippocampus to other areas of the brain, since different areas of the hippocampus are connected to different areas in the brain. The fact that hippocampal activity forms a traveling wave means that these target areas receive inputs from the hippocampus in a specific sequence rather than all at once.
Lubenov, E.V. & Siapas, A.G. 2009. Hippocampal theta oscillations are travelling waves. Nature, 459, 534-539.
http://www.eurekalert.org/pub_releases/2009-05/ciot-csr052909.php
Meditation may increase gray matter
Adding to the increasing evidence for the cognitive benefits of meditation, a new imaging study of 22 experienced meditators and 22 controls has revealed that meditators showed significantly larger volumes of the right hippocampus and the right orbitofrontal cortex, and to a lesser extent the right thalamus and the left inferior temporal gyrus. There were no regions where controls had significantly more gray matter than meditators. These areas of the brain are all closely linked to emotion, and may explain meditators' improved ability in regulating their emotions.
Luders, E. et al. 2009. The underlying anatomical correlates of long-term meditation: Larger hippocampal and frontal volumes of gray matter. NeuroImage, 45 (3), 672-678.
http://www.eurekalert.org/pub_releases/2009-05/uoc--htb051209.php
April 2009
Carriers of Alzheimer's gene show different brain activity as young adults
Possession of the ApoE4 gene variant associated with Alzheimer’s risk is found in about a quarter of the population, and has been shown to be associated with differences in the hippocampus in middle-aged and elderly healthy carriers. Now a new study of 36 younger adults (20-35) has revealed that differences in brain activity patterns between carriers and non-carriers are also evident at this stage, not only when performing a memory task, but even when the brain was at rest. Carriers of the gene had more brain activity in the hippocampus during the memory task, and more activity in the default mode network during rest. The findings support a theory that the brain's memory function may gradually wear itself out in those who go on to develop Alzheimer's.
Filippini, N. et al. 2009. Distinct patterns of brain activity in young carriers of the APOE-ε4 allele. Proceedings of the National Academy of Sciences, 106, 7209-7214.
http://www.eurekalert.org/pub_releases/2009-04/icl-yaa040609.php
How the brain translates memory into action
We know that the hippocampus is crucial for place learning, especially for the rapid learning of temporary events (such as where we’ve parked the car). Now a new study reveals more about how that coding for specific places connects to behaviour. Selective lesioning in rats revealed that the critical part is in the middle part of the hippocampus, where links to visuospatial information connect links to the behavioural control necessary for returning to that place after a period of time. Rats whose brain still maintained an accurate memory of place nevertheless failed to find their way when a sufficient proportion of the intermediate hippocampus was removed. The findings emphasise that memory failures are not only, or always, about actual deficits in memory, but can also be about being able to act on it.
Bast, T. et al. 2009. From Rapid Place Learning to Behavioral Performance: A Key Role for the Intermediate Hippocampus. PLoS Biology, 7(4), e1000089. doi:10.1371/journal.pbio.1000089
http://www.eurekalert.org/pub_releases/2009-04/plos-nwd041709.php
March 2009
Shrinking in hippocampus precedes Alzheimer's
An imaging study of 64 Alzheimer's patients, 44 people with mild cognitive impairment, and 34 people with no memory or thinking problems, has found that those with smaller hippocampal volumes and higher rates of shrinkage were two to four times as likely to develop dementia over the study period (average 18 months) as those with larger volumes and a slower rate of atrophy. During that time, 23 of the people with MCI developed Alzheimer's, and three of the healthy participants.
Henneman, W.J.P. et al. 2009. Hippocampal atrophy rates in Alzheimer disease: Added value over whole brain volume measures. Neurology, 72, 999-1007.
http://www.eurekalert.org/pub_releases/2009-03/aaon-sih031009.php
February 2009
Physical fitness improves memory in seniors
A study of 165 older adults (59-81) has found a significant association between physical fitness and performance on certain spatial memory tests. Fitness was also strongly correlated with hippocampus size. Although rodent studies have shown that exercise increases hippocampus size and spatial memory, this is the first study to show that in humans. The findings provide more evidence for the benefits of physical exercise in preventing memory loss in older adults.
Erickson, K.I. et al. 2009. Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus, Published online 2 January
http://www.eurekalert.org/pub_releases/2009-02/uoia-pfi022409.php
December 2008
Aging brains allow negative memories to fade
Another study has found that older adults (average age 70) remember fewer negative images than younger adults (average age 24), and that this has to do with differences in brain activity. When shown negative images, the older participants had reduced interactions between the amygdala and the hippocampus, and increased interactions between the amygdala and the dorsolateral prefrontal cortex. It seems that the older participants were using thinking rather than feeling processes to store these emotional memories, sacrificing information for emotional stability. The findings are consistent with earlier research showing that healthy seniors are able to regulate emotion better than younger people.
St. Jacques, P.L., Dolcos, F. & Cabeza, R. 2009. Effects of Aging on Functional Connectivity of the Amygdala for Subsequent Memory of Negative Pictures: A Network Analysis of Functional Magnetic Resonance Imaging Data. Psychological Science, 20 (1), 74-84.
http://www.eurekalert.org/pub_releases/2008-12/uoaf-aba121608.php
http://www.eurekalert.org/pub_releases/2008-12/dumc-oay121508.php
October 2008
Why it’s so hard to disrupt your routine
New research has added to our understanding of why we find it so hard to break a routine or overcome bad habits. The problem lies in the competition between the striatum and the hippocampus. The striatum is involved with habits and routines, for example, it records cues or landmarks that lead to a familiar destination. It’s the striatum that enables you to drive familiar routes without much conscious awareness. If you’re travelling an unfamiliar route however, you need the hippocampus, which is much ‘smarter’. The mouse study found that when the striatum was disrupted, the mice had trouble navigating using landmarks, but they were actually better at spatial learning. When the hippocampus was disrupted, the converse was true. This may help us understand, and treat, certain mental illnesses in which patients have destructive, habit-like patterns of behavior or thought. Obsessive-compulsive disorder, Tourette syndrome, and drug addiction all involve abnormal function of the striatum. Cognitive-behavioral therapy may be thought of as trying to learn to use one of these systems to overcome and, ultimately, to re-train the other.
Lee, A.S. et al. 2008. A double dissociation revealing bidirectional competition between striatum and hippocampus during learning. Proceedings of the National Academy of Sciences, 105 (44), 17163-17168.
http://www.eurekalert.org/pub_releases/2008-10/yu-ce102008.php
Occasional memory loss tied to lower brain volume
A study of 503 seniors (aged 50-85) with no dementia found that 453 of them (90%) reported having occasional memory problems such as having trouble thinking of the right word or forgetting things that happened in the last day or two, or thinking problems such as having trouble concentrating or thinking more slowly than they used to. Such problems have been attributed to white matter lesions, which are very common in older adults, but all of the participants in the study had white matter lesions in their brains, and the amount of lesions was not tied to occasional memory problems. However it was found that those who reported having such problems had a smaller hippocampus than those who had no cognitive problems. This was most noteworthy in subjects with good objective cognitive performance.
van Norden, A.G.W. et al. 2008. Subjective cognitive failures and hippocampal volume in elderly with white matter lesions. Neurology, 71, 1152-1159.
http://www.eurekalert.org/pub_releases/2008-10/aaon-oml093008.php
Drinking alcohol associated with smaller brain volume
It is estimated that brain volume decreases by 1.9% per decade, accompanied by an increase in white matter lesions. Because moderate alcohol consumption has been associated with a lower risk of cardiovascular disease, it’s been thought that small amounts of alcohol might also reduce age-related declines in brain volume, although it’s known that large amounts of alcohol will reduce brain volume. However, a large, long-running study, has now found that, even at low levels of alcohol consumption, brain volume was negatively affected. Moreover, although men were more likely to be heavier drinkers, the association between drinking and brain volume was stronger in women.
Paul, C.A. et al. 2008. Association of Alcohol Consumption With Brain Volume in the Framingham Study. Archives of Neurology, 65(10), 1363-1367.
http://www.eurekalert.org/pub_releases/2008-10/jaaj-daa100908.php
August 2008
Encoding isn’t solely in the hippocampus
Perhaps we can improve memory in older adults with a simple memory trick. The hippocampus is a vital region for learning and memory, and indeed the association of related details to form a complete memory has been thought to occur entirely within this region. However, a new imaging study has found that when volunteers memorized pairs of words such as "motor/bear" as new compound words ("motorbear") rather than separate words, then the perirhinal cortex, rather than the hippocampus, was activated, and this activity predicted whether the volunteers would be able to successfully remember the pairs in the future.
Haskins, A.L. et al. 2008. Perirhinal Cortex Supports Encoding and Familiarity-Based Recognition of Novel Associations. Neuron, 59, 554-560.
http://www.sciencedaily.com/releases/2008/08/080828220519.htm
http://www.eurekalert.org/pub_releases/2008-08/uoc--mts082808.php
June 2008
Long-term cannabis users may have structural brain abnormalities
An imaging study of 15 men who smoked more than five cannabis joints daily for more than 10 years has found that, compared with individuals who were not cannabis users, the heavy cannabis users tended to have a smaller hippocampus and amygdala. They also performed significantly worse on verbal learning, but this didn’t correlate with regional brain volumes.
Yücel, M. et al. 2008. Regional Brain Abnormalities Associated With Long-term Heavy Cannabis Use . Archives of General Psychiatry, 65(6), 694-701.
http://www.eurekalert.org/pub_releases/2008-06/usmc-usr061208.php
How Ritalin works to focus attention
Ritalin has been widely used for decades to treat attention deficit hyperactivity disorder (ADHD), but until now the mechanism of how it works hasn’t been well understood. Now a rat study has found that Ritalin, in low doses, fine-tunes the functioning of neurons in the prefrontal cortex, and has little effect elsewhere in the brain. It appears that Ritalin dramatically increases the sensitivity of neurons in the prefrontal cortex to signals coming from the hippocampus. However, in higher doses, prefrontal neurons stopped responding to incoming information, impairing cognition. Low doses also reinforced coordinated activity of neurons, and weakened activity that wasn't well coordinated. All of this suggests that Ritalin strengthens dominant and important signals within the prefrontal cortex, while lessening weaker signals that may act as distractors.
Devilbiss, D.M. & Berridge, C.W. 2008. Cognition-Enhancing Doses of Methylphenidate Preferentially Increase Prefrontal Cortex Neuronal Responsiveness. Biological Psychiatry, Available online 30 June 2008
http://www.eurekalert.org/pub_releases/2008-06/uow-suh062408.php
March 2008
Short-term stress can affect learning and memory
We know that long-lasting, severe stress can impair cell communication in the hippocampus. Now rodent studies have demonstrated that the same outcome can happen with short-term stress. But rather than involving the familiar stress hormone cortisol, acute stress activated corticotropin releasing hormones, which led to the rapid disintegration of dendritic spines in the hippocampus, thus limiting the ability of synapses to collect and store memories.
Chen, Y. et al. 2008. Rapid Loss of Dendritic Spines after Stress Involves Derangement of Spine Dynamics by Corticotropin-Releasing Hormone. Journal of Neuroscience, 28, 2903-2911.
http://www.eurekalert.org/pub_releases/2008-03/uoc--ssc031008.php
Injection of human umbilical cord blood helps aging brain
A rat study has found that a single intravenous injection of human umbilical cord blood mononuclear cells in aged rats significantly improved the microenvironment of the aged hippocampus and rejuvenated the aged neural stem/progenitor cells. The increase in neurogenesis seemed to be due to a decrease in inflammation. The results raise the possibility of cell therapy to rejuvenate the aged brain.
Bachstetter, A.D. et al. 2008. Peripheral injection of human umbilical cord blood stimulates neurogenesis in the aged rat brain. BMC Neuroscience, 9, 22.
http://www.physorg.com/news124384387.html
February 2008
Stress hormone impacts memory, learning in diabetic rodents
A rodent study sheds light on why diabetes can impair cognitive function. The study found that increased levels of a stress hormone (called cortisol in humans) in diabetic rats impaired synaptic plasticity and reduced neurogenesis in the hippocampus. When levels returned to normal, the hippocampus recovered. Cortisol production is controlled by the hypothalamic-pituitary axis (HPA). People with poorly controlled diabetes often have an overactive HPA axis and excessive cortisol.
Stranahan, A.M et al. 2008. Diabetes impairs hippocampal function through glucocorticoid-mediated effects on new and mature neurons. Nature Neuroscience, 11, 309–317.
http://www.eurekalert.org/pub_releases/2008-02/nioa-shi021508.php
October 2007
Mouse study points to new therapy for Fragile X sufferers
A mouse study has found evidence that fragile X mutation produces a highly selective impairment to long-term potentiation in hippocampal cells, and that adding brain-derived neurotrophic factor (BNDF) proteins to the hippocampus restored it.
Lauterborn, J.C. et al. 2007. Brain-Derived Neurotrophic Factor Rescues Synaptic Plasticity in a Mouse Model of Fragile X Syndrome. Journal of Neuroscience, 27 (40), 10685-10694.
http://www.eurekalert.org/pub_releases/2007-10/uoc--urr100507.php
Adult neurogenesis confirmed in primates
A study with marmosets has confirmed that the rate at which new neural cells form in the hippocampus (neurogenesis) begins to decline soon after reaching adulthood. This is the first study to confirm the finding from rodent studies in primates, and confirms that findings from rodent studies regarding ways of enhancing adult neurogenesis can be applied to primates.
Leuner, B., Kozorovitskiy, Y., Gross, C.G. & Gould, E. 2007. Diminished adult neurogenesis in the marmoset brain precedes old age. Proceedings of the National Academy of Sciences, 104 (43), 17169-17173.
http://www.eurekalert.org/pub_releases/2007-10/pu-bcg101207.php
March 2007
New research shows why too much memory may be a bad thing
People who are able to easily and accurately recall historical dates or long-ago events may have a harder time with word recall or remembering the day's current events. A mouse study reveals why. Neurogenesis has been thought of as a wholly good thing — having more neurons is surely a good thing — but now a mouse study has found that stopping neurogenesis in the hippocampus improved working memory. Working memory is highly sensitive to interference from information previously stored in memory, so it may be that having too much information may hinder performing everyday working memory tasks.
Saxe, M.D. et al. 2007. Paradoxical influence of hippocampal neurogenesis on working memory. Proceedings of the National Academy of Sciences, 104 (11), 4642-4646.
http://www.sciencedaily.com/releases/2007/03/070329092022.htm
http://www.eurekalert.org/pub_releases/2007-03/cumc-nrs032807.php
February 2007
Odor can help memory, in some circumstances
A study in which students played a computer version of a common memory game in which you turn over pairs of cards to find each one's match found that those who played in a rose-scented room and were later exposed to the same scent during slow-wave sleep, remembered the locations of the cards significantly better than people who didn't have that experience (97% vs 86%). Those exposed to the odor during REM sleep, however, saw no memory boost. Imaging revealed the hippocampus was activated when the odor was presented during slow-wave sleep. Having the smell available throughout sleep wouldn’t help, however, because we adapt to smells very quickly. Being exposed to the smell when being tested didn’t help either. Nor did experiencing the odor during slow-wave sleep help when the memory task involved a different type of memory — learning a finger-tapping sequence — probably because procedural memory doesn’t depend on the hippocampus.
Rasch, B., Büchel, C., Gais, S. & Born, J. 2007. Odor Cues During Slow-Wave Sleep Prompt Declarative Memory Consolidation. Science, 315 (5817), 1426-1429.
http://www.physorg.com/news92647884.html
http://www.nature.com/news/2007/070305/full/070305-10.html
January 2007
How we predict the future
A brain imaging study has revealed those regions involved in imagining future events are much the same as those regions involved in remembering past events, suggesting the brain apparently predicts the course of future events by imagining them taking place much like similar past ones. This is also consistent with observations from amnesic patients and very young children — that the capacity to predict the future depends on being able to remember the past. One set of regions that was more active while envisioning the future than while recollecting the past has been implicated in imagined (simulated) bodily movements, suggesting that we place future scenarios in well known visual–spatial contexts.
Szpunar, K.K., Watson, J.M. & McDermott, K.B. 2007. Neural substrates of envisioning the future. Proceedings of the National Academy of Sciences USA, 104, 642-647.
http://www.sciam.com/article.cfm?chanId=sa003&articleId=CFEBFD00-E7F2-99DF-3E7DCD24612A6C36
http://news.bbc.co.uk/2/hi/health/6216913.stm
http://www.sciencedaily.com/releases/2007/01/070102092224.htm
The finding is supported by another study, demonstrating that amnesic patients with primary damage to the hippocampus were markedly impaired at imagining new experiences in response to short verbal cues that outlined a range of simple commonplace scenarios. The patients were unable to visualize the whole experience in their mind's eye, seeing instead just a collection of separate images.
Hassabis, D., Kumaran, D., Vann, S.D. & Maguire, E.A. 2007. Patients with hippocampal amnesia cannot imagine new experiences. Proceedings of the National Academy of Sciences USA, 104 (5), 1726-1731.
Full text available at http://tinyurl.com/2jwpn3
http://www.eurekalert.org/pub_releases/2007-01/wt-pwa011107.php
Sleep deprivation affects neurogenesis
A rat study has found that rats deprived of sleep for 72 hours had higher levels of the stress hormone corticosterone, and produced significantly fewer new brain cells in a particular region of the hippocampus. Preventing corticosterone levels from rising also prevented the reduction in neurogenesis.
Mirescu, C., Peters, J.D., Noiman, L. & Gould, E. 2006. Sleep deprivation inhibits adult neurogenesis in the hippocampus by elevating glucocorticoids. Proceedings of the National Academy of Science, 103 (50), 19170-19175.
http://news.bbc.co.uk/2/hi/health/6347043.stm
December 2006
More on how memories are consolidated during sleep
A new study sheds more light on how memory is consolidated during sleep. Using a new technique, the research confirms that new information is transferred between the hippocampus and the cerebral cortex, and, unexpectedly, provides evidence suggesting that the cerebral cortex actively controls this transfer.
Hahn, T., Sakmann, B. & Mehta, M.R. 2006. Phase-locking of hippocampal interneurons' membrane potential to neocortical up-down states. Nature Neuroscience, 9, 1359-1361.
http://www.eurekalert.org/pub_releases/2006-12/m-lds120506.htm
Still more on how memories are consolidated during sleep
In research following up an earlier study in which rats were shown to form complex memories for sequences of events experienced while they were awake, and that these memories were replayed while they slept, it has been shown that these replayed memories do contain the visual images that were present during the running experience. By showing that the brain is replaying memory events in the visual cortex and in the hippocampus at the same time, the finding suggests that this process may contribute to or reflect the result of the memory consolidation process.
Ji, D. & Wilson, M.A. 2006. Coordinated memory replay in the visual cortex and hippocampus during sleep. Nature Neuroscience, 10, 100-107.
http://www.eurekalert.org/pub_releases/2006-12/miot-mtr121806.htm
Why neurogenesis is so much less in older brains
A rat study has revealed that the aging brain produces progressively fewer new nerve cells in the hippocampus (neurogenesis) not because there are fewer of the immature cells (neural stem cells) that can give rise to new neurons, but because they divide much less often. In young rats, around a quarter of the neural stem cells were actively dividing, but only 8% of cells in middle-aged rats and 4% in old rats were. This suggests a new approach to improving learning and memory function in the elderly.
Hattiangady, B. & Shetty, A.K. 2006. Aging does not alter the number or phenotype of putative stem/progenitor cells in the neurogenic region of the hippocampus. Neurobiology of Aging, In Press, Corrected Proof, Available online 7 November 2006.
http://www.eurekalert.org/pub_releases/2006-12/dumc-sca121806.htm
November 2006
Rote learning may improve verbal memory in seniors
A study involving 24 older adults (aged 55—70) has found that six weeks of intensive rote learning (memorizing a newspaper article or poem of 500 words every week) resulted in measurable changes in N-acetylaspartate, creatine and choline, three metabolites in the brain that are related to memory performance and neural cell health, in the left posterior hippocampus — but only after a six-week rest period, at which time the participants also showed improvements in their verbal and episodic memory, and also only in one of the two learning groups. The group that didn’t show any change were said to have low compliance with the memorization task.
McNulty, J. et al. The Identification of Neurometabolic Sequelae Post-learning Using Proton Magnetic Resonance Spectroscopy. Presented November 26 at the annual meeting of the Radiological Society of North America (RSNA).
http://www.eurekalert.org/pub_releases/2006-11/rson-rli112206.php
How the brain detects novelty
New research suggests that the hippocampus makes predictions of what will happen next by automatically recalling an entire sequence of events in response to a single cue, allowing us to anticipate future events and detect when things do not turn out as expected. Rather than reacting to novelty, the hippocampus seems to act as a comparison device, matching up past and present experience.
Kumaran, D. & Maguire, E.A. 2006. An unexpected sequence of events: Mismatch detection in the human hippocampus. PLoS Biol 4(12): e424. DOI: 10.1371/journal.pbio.0040424
http://www.eurekalert.org/pub_releases/2006-11/wt-tot112406.php
October 2006
Repeated common infections may lead to memory deficits over a lifetime
A mouse study suggests that over the lifetime of an individual, a picornavirus-related infection could have a permanent effect on memory late in life. Picornaviruses are the most common infectious viral agents in humans. They include rhinoviruses, enteroviruses, encephalitis, myocarditis, meningitis, and those that cause foot-and-mouth disease, polio and hepatitis A. Generally individuals contract two or three enterovirus and/or rhinovirus infections each year. In the study, mice infected with an encephalomyelitis virus (comparable to the human poliovirus) had difficulty learning to navigate a maze designed to test various components of spatial memory. The degree of memory impairment was directly correlated to the number of dead brain cells in the hippocampus. "Our findings suggest that picornavirus infections throughout the lifetime of an individual may chip away at the cognitive reserve, increasing the likelihood of detectable cognitive impairment as the individual ages. We hypothesize that mild memory and cognitive impairments of unknown etiology may, in fact, be due to accumulative loss of hippocampus function caused by repeated infection with common and widespread neurovirulent picornaviruses."
Buenz, E.J., Rodriguez, M. & Howe, C.L. 2006. Disrupted spatial memory is a consequence of picornavirus infection. Neurobiology of Disease, 24 (2), 266-273.
http://www.eurekalert.org/pub_releases/2006-10/mc-mcs101706.php
'Memory gene' identified
Analysis of the human genome has revealed a gene associated with memory performance. The gene is called Kibra, and is expressed in the hippocampus. According to brain scans, people with the version of the gene related to poorer memory potential had to tax their brains harder to remember the same amount of information.
Papassotiropoulos, A. 2006. Common Kibra Alleles Are Associated with Human Memory Performance. Science, 314 (5798), 475-478.
http://www.eurekalert.org/pub_releases/2006-10/ttgr-rti101906.php
Why moderate drinking may boost memory
Another study has come out suggesting moderate amounts of alcohol are good for the brain, and explaining why. The rat study found that low levels of alcohol increased the expression of a particular receptor, NR1, on the surface of neurons in the hippocampus. Increasing the number of NR1 receptors in a different group of rats resulted in a memory boost similar to that seen in the rats given low doses of alcohol. There were no toxic effects of low-level alcohol consumption (1—2 drinks a day) on the brain, but a higher dose of alcohol did damage neurons.
The findings were presented at the Society for Neuroscience's annual meeting on October 14-18 in Atlanta, Georgia.
http://www.sciencedaily.com/releases/2006/10/061025171322.htm
http://www.eurekalert.org/pub_releases/2006-10/osu-mdm102506.php
Chemo drugs for treating breast cancer may cause changes in cognitive function
A study involving female mice confirms the existence of "chemobrain", finding mild to moderate learning and memory deficits in mice receiving methotrexate and 5-fluorouracil (5FU), two drugs widely used in women to prevent recurrence of breast cancer. The deficits extended only to those types of memory that involve the hippocampus or the frontal lobes (spatial memory and working memory, in this instance). The study only looked at short-term effects (2—4 weeks).
Winocur, G., Vardy, J., Binns, M.A., Kerr, L. & Tannock, I. 2006. The effects of the anti-cancer drugs, methotrexate and 5-fluorouracil, on cognitive function in mice. Pharmacology, Biochemistry and Behavior, 85 (1), 66-75.
http://www.eurekalert.org/pub_releases/2006-10/b-cdf102706.php
September 2006
Anticipation strengthens memory
An imaging study has revealed that the amygdala and the hippocampus become activated when a person is anticipating a difficult situation (some type of gruesome picture). Moreover, the higher the level of activation during this anticipation, the better the pictures were remembered two weeks later. The study demonstrates how expectancy can affect long-term memory formation, and suggests that the greater our anxiety about a situation, the better we’ll remember that situation. If it’s an unpleasant one, this will only reinforce the anxiety, setting up a vicious cycle. The study has important implications for the treatment of psychological conditions such as post-traumatic stress disorder and social anxiety.
Mackiewicz, K.L., Sarinopoulos, I., Cleven, K.L. & Nitschke, J.B. 2006. The effect of anticipation and the specificity of sex differences for amygdala and hippocampus function in emotional memory. PNAS, 103, 14200-14205.
http://www.eurekalert.org/pub_releases/2006-09/uow-apa090106.php
August 2006
Childhood sleep apnea linked to brain damage, lower IQ
It’s long been known that sleep apnea, characterized by fragmented sleep, interrupted breathing and oxygen deprivation, harms children's learning ability and school performance. Now a new study involving 19 children with severe obstructive sleep apnea has identified damage in the hippocampus and the right frontal cortex, and linked that to observable deficits in performance on cognitive tests. Children with OSA had an average IQ of 85 compared to 101 in matched controls. They also performed worse on standardized tests measuring executive functions, such as verbal working memory (8 versus 15) and word fluency (9.7 versus 12). Obstructive sleep apnea affects 2% of children in the United States, but it is unclear how many of these suffer from severe apnea.
Springer, M.V., McIntosh, A.R., Winocur, G. & Grady, C.L. 2005. The Relation Between Brain Activity During Memory Tasks and Years of Education in Young and Older adults. Neuropsychology and Aging, 19 (2)
http://www.eurekalert.org/pub_releases/2006-08/jhmi-csa081506.php
February 2006
A single memory is processed in three separate parts of the brain
A rat study has demonstrated that a single experience is indeed processed differently in separate parts of the brain. They found that when the rats were confined in a dark compartment of a familiar box and given a mild shock, the hippocampus was involved in processing memory for context, while the anterior cingulate cortex was responsible for retaining memories involving unpleasant stimuli, and the amygdala consolidated memories more broadly and influenced the storage of both contextual and unpleasant information.
Malin, E.L. & McGaugh, J.L. 2006. Differential involvement of the hippocampus, anterior cingulate cortex, and basolateral amygdala in memory for context and footshock. Proceedings of the National Academy of Sciences, 103 (6), 1959-1963.
http://www.eurekalert.org/pub_releases/2006-02/uoc--urp020106.php
September 2005
Memory of fear more complex than supposed
It seems that fear memory is more complex than has been thought. A new mouse study has shown that not only the hippocampus and amygdala are involved, but that the prefrontal cortex is also critical. The development of the fear association doesn’t occur immediately after a distressing event, but develops over time. The process, it now seems, depends directly on a protein called NR2B.
Zhao, M-G. et al. 2005. Roles of NMDA NR2B Subtype Receptor in Prefrontal Long-Term Potentiation and Contextual Fear Memory. Neuron, 47, 859-872.
http://www.eurekalert.org/pub_releases/2005-09/uot-sco091505.php
July 2005
How trauma triggers long-lasting memories in the brain
A rat study sheds more light on why emotional experiences tend to be better remembered than emotionally neutral events. The study found that emotionally arousing events activated the amygdala, which then increased a specific protein — activity-regulated cytoskeletal protein ("Arc") — in the neurons in the hippocampus. It's thought that Arc helps store these memories by strengthening the synapses.
McIntyre, C.K., Miyashita, T., Setlow, B., Marjon, K.D., Steward, O., Guzowski, J.F. & McGaugh, J.L. 2005. Memory-influencing intra-basolateral amygdala drug infusions modulate expression of Arc protein in the hippocampus. Proceedings of the National Academy of Sciences, 102 (30), 10718-10723.
http://www.eurekalert.org/pub_releases/2005-07/uoc--nih072505.php
June 2005
How sleep improves memory
While previous research has been conflicting, it does now seem clear that sleep consolidates learning of motor skills in particular. A new imaging study involving 12 young adults taught a sequence of skilled finger movements has found a dramatic shift in activity pattern when doing the task in those who were allowed to sleep during the 12 hour period before testing. Increased activity was found in the right primary motor cortex, medial prefrontal lobe, hippocampus and left cerebellum — this is assumed to support faster and more accurate motor output. Decreased activity was found in the parietal cortices, the left insular cortex, temporal pole and fronto-polar region — these are assumed to reflect less anxiety and a reduced need for conscious spatial monitoring. It’s suggested that this is one reason why infants need so much sleep — motor skill learning is a high priority at this age. The findings may also have implications for stroke patients and others who have suffered brain injuries.
Walker, M.P., Stickgold, R., Alsop, D., Gaab, N. & Schlaug, G. 2005. Sleep-dependent motor memory plasticity in the human brain.Neuroscience, 133 (4) , 911-917.
http://www.eurekalert.org/pub_releases/2005-06/bidm-ssh062805.php
February 2005
Why traumatic memories have the power they do
In the first imaging study to look at retrieval of emotional memories after a long period (one year after encoding), researchers found that people did recall emotional images, both pleasant and unpleasant, better than emotionally-neutral images. This recall was associated with higher activity in both the amygdala and the hippocampus. The synchronicity of activity between these two regions suggested that each region triggers the other, creating a self-reinforcing "memory loop" in which an emotional cue might trigger recall of the event, which then loops back to a re-experiencing of the emotion of the event. The findings suggest why people subject to traumatic events may be trapped in a cycle of emotion and recall that aggravates post-traumatic stress disorder, and may also suggest why therapies in which people relive such memories and reshape perspective to make it less traumatic can help people cope with such memories.
Dolcos, F., LaBar, K.S. & Cabeza, R. 2005. Remembering one year later: Role of the amygdala and the medial temporal lobe memory system in retrieving emotional memories. PNAS, 102 (7), 2626-2631.
http://www.eurekalert.org/pub_releases/2005-03/du-ems030805.php
May 2004
Hippocampus and subiculum both critical for short-term memory
A new animal study has revealed that the hippocampus shares its involvement in short-term memory with an adjacent brain region, the subiculum. Both regions act together to establish and retrieve short-term memories. The process involves each region acting at different times, with the other region shutting off while the other is active. The shortest memories (10-15s) were found to be controlled almost exclusively by the subiculum. After 15s, the hippocampus took over. It was also found that the hippocampus appeared to respond in a way influenced by previous experiences, allowing it to anticipate future events on the basis of past outcomes. This is an advantage but can also cause errors.
Deadwyler, S.A. & Hampson, R.E. 2004. Differential but Complementary Mnemonic Functions of the Hippocampus and Subiculum. Neuron, 42 (3), 465-476.
http://www.eurekalert.org/pub_releases/2004-05/wfub-nrs050604.php
March 2004
Different brain regions for arousing and non-arousing words
An imaging study has found that words representing arousing events (e.g., “rape”, “slaughter”) activate cells in the amygdala, while nonarousing words (e.g., “sorrow”, “mourning”) activated cells in the prefrontal cortex. The hippocampus was active for both type of words. On average, people remembered more of the arousing words than the others, suggesting stress hormones, released as part of the response to emotionally arousing events, are responsible for enhancing memories of those events.
Kensinger, E.A. & Corkin, S. 2004. Two routes to emotional memory: Distinct neural processes for valence and arousal. PNAS, 101, 3310-3315. Published online before print February 23 2004, 10.1073/pnas.0306408101
http://www.eurekalert.org/pub_releases/2004-03/miot-mlu030104.php
February 2004
More light shed on memory encoding
Anything we perceive contains a huge amount of sensory information. How do we decide what bits to process? New research has identified brain cells that streamline and simplify sensory information, markedly reducing the brain's workload. The study found that when monkeys were taught to remember clip art pictures, their brains reduced the level of detail by sorting the pictures into categories for recall, such as images that contained "people," "buildings," "flowers," and "animals." The categorizing cells were found in the hippocampus. As humans do, different monkeys categorized items in different ways, selecting different aspects of the same stimulus image, most likely reflecting different histories, strategies, and expectations residing within individual hippocampal networks.
Hampson, R.E., Pons, T.P., Stanford, T.R. & Deadwyler, S.A. 2004. Categorization in the monkey hippocampus: A possible mechanism for encoding information into memory. PNAS, 101, 3184-3189. Published online before print as 10.1073/pnas.0400162101
http://www.eurekalert.org/pub_releases/2004-02/wfub-nfo022604.php
January 2004
Now definite? Memories are consolidated during sleep
Researchers of a new study claim that their research finally settles the question of whether or not sleep consolidates new memories. The study involved detailed recording of specific learning- and memory- related areas (hippocampus and forebrain) in the brains of rats. The rats were exposed to four kinds of novel objects. Analysis of brain signals before, during, and after this experience, revealed "reverberations" of distinctive brain wave patterns across all the areas being monitored for up to 48 hours after the novel experience. This pattern was much more prevalent in slow-wave sleep than in REM sleep. Previous studies by the same researchers have found that the activation of genes that affect memory consolidation occurs during REM sleep, not slow-wave sleep. It is proposed that both stages of sleep are important for memory consolidation. Previous studies have tended to focus solely on the hippocampus, and have observed brain activity for a much shorter period.
Ribeiro, S., Gervasoni, D., Soares, E.S., Zhou, Y., Lin, S-C., Pantoja, J., Lavine, M. & Nicolelis, M.A.L. 2004. Long-Lasting Novelty-Induced Neuronal Reverberation during Slow-Wave Sleep in Multiple Forebrain Areas. PLoS Biol 2(1): e24 DOI:10.1371/journal.pbio.0020024.
http://www.eurekalert.org/pub_releases/2004-01/dumc-etm011304.php
http://www.eurekalert.org/pub_releases/2004-01/plos-brd011204.php
Exercise may counteract bad effect of high-fat diet on memory
An animal study has investigated the interaction of diet and exercise on synaptic plasticity (an important factor in learning performance). A diet high in fat reduced levels of brain-derived neurotrophic factor (BDNF) in the hippocampus, and impaired performance on spatial learning tasks, but both of these consequences were prevented in those animals with access to voluntary wheel-running. Exercise appeared to interact with the same molecular systems disrupted by the high-fat diet.
Molteni, R., Wu, A., Vaynman, S., Ying, Z., Barnard, R.J. & Gómez-Pinilla, F. 2004. Exercise reverses the harmful effects of consumption of a high-fat diet on synaptic and behavioral plasticity associated to the action of brain-derived neurotrophic factor. Neuroscience, 123 (2), 429-440.
Forgetting may sometimes be an active process
New evidence suggests that forgetting may not simply be the passive phenomenon it has always been thought. Rather than simply a failure to properly encode or consolidate memories, forgetting may also be an active process — a deliberate action to erase unwanted memories. The recent study involved seeing the effect of a memory-blocking drug called APV on slices of brain tissue taken from the hippocampus of rats. APV blocks receptors for the neurotransmitter NMDA, which mediates the strengthening of synapses. While, as expected, NMDA activity was reduced in the treated hippocampal neurons, it was also found that “sharp waves” doubled in magnitude. This type of electrical activity is little understood, but it is known that such waves occur when an animal is alert but not actively exploring its environment or receiving sensory input, and they do not occur when brain activity associated with memory processing is occurring. Thus, the fact that a drug known to block memory, enhances sharp waves, is suggestive. The researchers speculate that sharp waves might work by reversing long-term potentiation — the mechanism by which synapses are thought to be strengthened — and that their function is to erase some of the information that was encoded during the active phase.
More evidence for active forgetting
In an imaging study involving 24 people aged 19 to 31, participants were given pairs of words and told to remember some of the matched pairs but forget others. Trying to shut out memory appeared more demanding than remembering, in that some areas of the brain were significantly more when trying to suppress memory. Both the prefrontal cortex and the hippocampus were active. Those whose prefrontal cortex and hippocampus were most active during this time were most successful at suppressing memory.
Anderson, M.C., Ochsner, K.N., Kuhl, B., Cooper, J., Robertson, E., Gabrieli, S.W., Glover, G.H. & Gabrieli, J.D.E. 2004. Neural Systems Underlying the Suppression of Unwanted Memories. Science, 303 (5655), 232-235.
http://www.eurekalert.org/pub_releases/2004-01/su-rrb010604.php
Gene essential for development of normal brain connections discovered
After birth, learning and experience change the architecture of the brain dramatically. The structure of individual neurons, or nerve cells, changes during learning to accommodate new connections between neurons. Neuroscientists believe these structural changes are initiated when neurons are activated, causing calcium ions to flow into cells and alter the activity of genes. Now the first gene, CREST, known to mediate these changes in the structure of neurons in response to calcium, has been discovered. In the study, it was found that mice lacking this gene didn’t develop normally in response to sensory experience, and their brains, while normal at birth, later showed far less interconnectivity between neurons. The gene produces a protein that, in adult humans, is produced in the hippocampus. It is therefore speculated that the protein may be necessary for learning and memory storage. The discovery of this gene may have implications for certain types of learning disorders in humans.
Aizawa, H., Hu, S-C., Bobb, K., Balakrishnan, K., Ince, G., Gurevich, I., Cowan, M. & Ghosh, A. 2004. Dendrite Development Regulated by CREST, a Calcium-Regulated Transcriptional Activator. Science, 303 (5655), 197-202.
http://www.eurekalert.org/pub_releases/2004-01/uoc--gef010804.php
Brain protein affecting learning and memory discovered
A significant new brain protein has been identified. Cypin is found throughout the body, but in the brain it now appears that it regulates neuron branching in the hippocampus. Such branching is thought to increase when learning occurs, and a reduction in branching is associated with certain neurological diseases. Discovery of this protein opens the possibility of new drug therapies for treating neurological disorders, and perhaps even memory-enhancing drugs.
Akum, B.F., Chen, M., Gunderson, S.I., Riefler, G.M., Scerri-Hansen, M.M. & Firestein, B.L. 2004. Cypin regulates dendrite patterning in hippocampal neurons by promoting microtubule assembly. Nature Neuroscience, 7(2), 145-152.
http://www.eurekalert.org/pub_releases/2004-01/rtsu-rsd011204.php
http://news.independent.co.uk/world/science_medical/story.jsp?story=482567
September 2003
More learned about how spatial navigation works in humans
Researchers monitored signals from individual brain cells as patients played a computer game in which they drove around a virtual town in a taxi, searching for passengers who appeared in random locations and delivering them to their destinations. Previous research has found specific cells in the brains of rodents that respond to “place”, but until now we haven’t known whether humans have such specific cells. This study identifies place cells (primarily found in the hippocampus), as well as “view” cells (responsive to landmarks; found mainly in the parahippocampal region) and “goal” cells (responsive to goals, found throughout the frontal and temporal lobes). Some cells respond to combinations of place, view and goal — for example, cells that responded to viewing an object only when that object was a goal.
Ekstrom, A.D., Kahana, M.J., Caplan, J.B., Fields, T.A., Isham, E.A., Newman, E.L. & Fried, I. 2003. Cellular networks underlying human spatial navigation.Nature, 425 (6954), 184-7.
http://www.eurekalert.org/pub_releases/2003-09/uoc--vgu091003.php
June 2003
Another step in understanding how memories are formed
The electrical activity of individual neurons in the brains of two adult rhesus monkeys was monitored while the monkeys played a memory-based video game in which an image pops up on the computer screen with four targets—white dots—superimposed on it. The monkeys’ task was to learn which target on which image was associated with a reward (a drop of their favorite fruit juice). Dramatic changes in the activity of some hippocampal neurons, which the scientists called "changing cells", paralleled their learning, indicating that these neurons are involved in the initial formation of new associative memories. In some of the cells, activity continued after the animal had learned the association, suggesting that these cells may participate in the eventual storage of the associations in long-term memory.
Wirth, S., Yanike, M., Frank, L.M., Smith, A.C., Brown, E.N. & Suzuki, W.A. 2003. Single Neurons in the Monkey Hippocampus and Learning of New Associations. Science, 300, 1578-1581.
http://www.eurekalert.org/pub_releases/2003-06/nyu-fir060503.php
http://tinyurl.com/ftob
March 2003
Brain implant may restore memory
An artificial hippocampus — a programmed silicone chip — is to be linked with live tissue taken from rat brains, and then will be tested on live animals. If all goes well, it will then be tested as a way to help people who have suffered brain damage due to stroke, epilepsy or Alzheimer's disease.
http://www.guardian.co.uk/international/story/0,3604,912940,00.html
http://www.newscientist.com/news/news.jsp?id=ns99993488
http://www.eurekalert.org/pub_releases/2003-03/ns-twf031203.php
February 2003
Another step in understanding how sleep affects memory
The value of sleep for memory takes a further step in being understood in new rodent research, which found that, as the rodents slept, the thalamus at the base of their brains originated bursts of electrical activity (“sleep spindles”), which were then detected in the somatosensory neocortex. Some 50 msec later, the hippocampus responded with a pulse of electricity (a “ripple”). "This neocortical-hippocampal dialogue may provide a selection mechanism for the time-compressed replay of information learned during the day." It’s suggested that the ripple is the hippocampus sending back neat, compact waves of memory to the neocortex where they are filed away for future reference. Most of this activity took place during slow wave sleep, the stage which makes up the majority of the sleep cycle.
Sirota, A., Csicsvari, J., Buhl, D. & Buzsáki, G. 2003. Communication between neocortex and hippocampus during sleep in rodents. Proc. Natl. Acad. Sci. USA, 100 (4), 2065-2069.
January 2003
Gene linked to poor episodic memory
Brain derived neurotrophic factor (BDNF) plays a key role in neuron growth and survival and, it now appears, memory. We inherit two copies of the BDNF gene - one from each parent - in either of two versions. Slightly more than a third inherit at least one copy of a version nicknamed "met," which the researchers have now linked to poorer memory. Those who inherit the “met” gene appear significantly worse at remembering events that have happened to them, probably as a result of the gene’s effect on hippocampal function. Most notably, those who had two copies of the “met” gene scored only 40% on a test of episodic (event) memory, while those who had two copies of the other version scored 70%. Other types of memory did not appear to be affected. It is speculated that having the “met” gene might also increase the risk of disorders such as Alzheimer’s and Parkinsons.
Egan, M.F., Kojima, M., Callicott, J.H., Goldberg, T.E., Kolachana, B.S., Bertolino, A., Zaitsev, E., Gold, B., Goldman, D., Dean, M., Lu, B. & Weinberger, D.R. 2003. The BDNF val66met Polymorphism Affects Activity-Dependent Secretion of BDNF and Human Memory and Hippocampal Function. Cell, 112, 257-269.
http://www.nih.gov/news/pr/jan2003/nimh-23.htm
http://www.eurekalert.org/pub_releases/2003-01/niom-hga012203.php
http://news.bbc.co.uk/1/hi/health/2687267.stm
More details about how memories are formed in the hippocampus
We know how important the hippocampus is in forming memories, but now, using newly developed imaging techniques, researchers have managed to observe how activity patterns within specific substructures of the hippocampus change during learning. The study identified areas within the hippocampus (the cornu ammonis and the dentate gyrus) as highly active during encoding of face-name pairs. This activity decreased as the associations were learned. A different area of the hippocampus (the subiculum) was active primarily during the retrieval of the face-name associations. Activity in the subiculum also decreased as retrieval became more practiced.
Zeineh, M.M., Engel, S.A., Thompson, P.M. & Bookheimer, S.Y. 2003. Dynamics of the Hippocampus During Encoding and Retrieval of Face-Name Pairs, Science, 299, 577-580.
http://www.eurekalert.org/pub_releases/2003-01/uoc--som012303.php
May 2002
Brain region involved in recalling memories from smell identified
We all know the power of smell in triggering the recall of memories. New research has found the specific area of the brain involved in this process - a section of the hippocampus called CA3. The hippocampus has long been known to play a crucial part in forming new memories. It appears that the CA3 region of the hippocampus is crucial for recalling memories from partial representations of the original stimulus.
Nakazawa, K., Quirk, M.C., Chitwood, R.A., Watanabe, M., Yeckel, M.F., Sun, L.D., Kato, A., Carr, C.A., Johnston, D., Wilson, M.A. & Tonegawa, S. 2002. Requirement for Hippocampal CA3 NMDA Receptors in Associative Memory Recall. Science 297, 211-218.
http://www.eurekalert.org/pub_releases/2002-05/bcom-tr052902.php
http://news.bbc.co.uk/hi/english/health/newsid_2017000/2017321.stm
December 2001
Rhythm rather than strength of neural activity may be crucial for memory formation
The strength of the electrical activity between neurons has long been thought to be the critical factor in forming memories, but new research suggests that at least in two critical brain areas, memory may hinge more on the timing than on the strength of neural activity. It seems that, as subjects studied word lists, clusters of neurons in the rhinal cortex and the hippocampus—adjacent brain areas already implicated in memory—fired synchronized electrical bursts that paved the way for remembering those words later. Moreover, the coordination of cell activity in the same two brain regions plummetted for a fraction of a second just after participants remembered a word from the list, possibly signaling an end to a coordinated neural effort. "Memory may emerge when rhinal and hippocampal neurons synchronously oscillate and then desynchronize."
Fell, J., Klaver, P., Lehnertz, K., Grunwald, T., Schaller, C., Elger, C.E. & Fernández, G. 2001. Human memory formation is accompanied by rhinal-hippocampal coupling and decoupling. Nature Neuroscience 4(12), 1259-1264.
http://www.sciencenews.org/20011110/fob6.asp
New study contradicts earlier finding of new brain cell growth in the adult primate neocortex
A very exciting finding a couple of years ago, was that adult monkeys were found to be able to create new neurons in the neocortex, the most recently evolved part of the brain. However a new study, using the most sophisticated cell analysis techniques available to analyze thousands of cells in the neocortex, has found that those neurons that appear to be new are in fact two separate cells, usually one “old” neuron and one newly created cell of a different type, such as a glial cell — although new neurons were indeed found in the hippocampus and the olfactory bulb (both older parts of the brain).
Kornack, D.R. & Rakic, P. 2001. Cell Proliferation Without Neurogenesis in Adult Primate Neocortex. Science, 294 (5549), 2127-2130.
http://www.eurekalert.org/pub_releases/2001-12/uorm-std120601.php