Older news items (pre-2010) brought over from the old website
September 2009
Healthy older brains not significantly smaller than younger brains
A study using healthy older adults from Holland's long-term Maastricht Aging Study found that the 35 cognitively healthy people who stayed free of dementia showed no significant decline in gray matter, but the 30 people who showed substantial cognitive decline although still dementia-free showed a significant reduction in brain tissue in the hippocampus and parahippocampal areas, and in the frontal and cingulate cortices. The findings suggest that atrophy in the normal older brain may have been over-estimated in earlier studies, by not screening out people whose undetected, slowly developing brain disease was killing off cells in key areas.
Burgmans, S. et al. 2009. The Prevalence of Cortical Gray Matter Atrophy May Be Overestimated In the Healthy Aging Brain. Neuropsychology, 23 (5), 541-550.
http://www.eurekalert.org/pub_releases/2009-09/apa-hob090309.php
Tetris increases gray matter and improves brain efficiency
In a study in which 26 adolescent girls played the computer game Tetris for half an hour every day for three months, their brains compared to controls increased grey matter in Brodmann Area 6 in the left frontal lobe and BAs 22 and 38 in the left temporal lobe — areas involved in planning complex coordinated movements, and coordinating sensory information. Their brains also showed greater efficiency, but in different areas — ones associated with critical thinking, reasoning, and language, mostly in the right frontal and parietal lobes. The finding points to improved efficiency being unrelated to grey matter increases.
Haier, R.J. et al. 2009. MRI assessment of cortical thickness and functional activity changes in adolescent girls following three months of practice on a visual-spatial task. BMC Research Notes, 2, 174.
http://www.eurekalert.org/pub_releases/2009-09/bc-itg090109.php
August 2009
Overweight and obese elderly have smaller brains
Analysis of brain scans from 94 people in their 70s who were still "cognitively normal" five years after the scan has revealed that people with higher body mass indexes had smaller brains on average, with the frontal and temporal lobes particularly affected (specifically, in the frontal lobes, anterior cingulate gyrus, hippocampus, and thalamus, in obese people, and in the basal ganglia and corona radiate of the overweight). The brains of the 51 overweight people were, on average, 6% smaller than those of the normal-weight participants, and those of the 14 obese people were 8% smaller. To put it in more comprehensible, and dramatic terms: "The brains of overweight people looked eight years older than the brains of those who were lean, and 16 years older in obese people." However, overall brain volume did not differ between overweight and obese persons. As yet unpublished research by the same researchers indicates that exercise protects these same brain regions: "The most strenuous kind of exercise can save about the same amount of brain tissue that is lost in the obese."
Raji, C.A. et al. 2009. Brain structure and obesity. Human Brain Mapping, Published Online: Aug 6 2009
http://www.newscientist.com/article/mg20327222.400-expanding-waistlines-may-cause-shrinking-brains
September 2008
Musicians use both sides of their brains more frequently than average people
A study of 20 classical music students with at least eight years of training and 20 matched controls (non-musician, psychology students) looked at performance and brain activity on a creative thinking task, in which they were shown a variety of household objects and asked to make up new functions for them. The musicians suggested more novel uses for the household objects, and had greater activity in both sides of their frontal lobes. Because musicians and non-musicians were equated in terms of their performance, this finding was not simply due to the musicians inventing more uses; there seems to be a qualitative difference in how they thought. One reason for the musicians' elevated use of both brain hemispheres may be that many musicians must be able to use both hands independently to play their instruments. The musicians also had higher IQ scores and performed better on a word association test, supporting previous research indicating the benefits of musical training.
Gibson, C., Folley, B.S. & Park, S. In press. Enhanced divergent thinking and creativity in musicians: A behavioral and near-infrared spectroscopy study. Brain and Cognition
http://www.physorg.com/news142185056.html
March 2008
Different use of brain areas may explain memory problems in schizophrenics
New research indicates that schizophrenics’ memory problems may be related to differences in how their brains process information. While both schizophrenic patients and healthy individuals used their frontal cortex while remembering and forgetting, healthy subjects used the right side when asked to remember spatial locations and schizophrenics used a wider network in both hemispheres. When healthy people were correct in their remembering, there was an increased activation of the right frontal cortex, an increase that didn’t occur when they couldn’t remember, and this was associated with a lack of confidence in their memory. However, schizophrenic patients showed an activation pattern on error trials indicating that they were remembering something, albeit incorrect. This was associated with a feeling of confidence about their memory.
Lee, J. et al. 2008. Origins of Spatial Working Memory Deficits in Schizophrenia: An Event-Related fMRI and Near-Infrared Spectroscopy Study. PLoS ONE, 3(3), e1760.
http://www.eurekalert.org/pub_releases/2008-03/vu-duo031008.php
September 2007
Why music training helps language
Several studies have come out in recent years suggesting that giving children music training can improve their language skills. A new study supports these findings by showing how. The latest study shows that music triggers changes in the brain stem, a very early stage in the processing pathway for both music and language. It has previously been thought that the automatic processing occurring at this level was not particularly malleable, and the strength of neuron connections there was fixed.
And in another study, researchers have found evidence for more commonality in the brain networks involved in music and language. One network, based in the temporal lobes, helps us memorize information in both language and music— for example, words and meanings in language and familiar melodies in music. The other network, based in the frontal lobes, helps us unconsciously learn and use the rules that underlie both language and music, such as the rules of syntax in sentences, and the rules of harmony in music.
Musacchia, G., Sams, M., Skoe, E. & Kraus, N. 2007. Musicians have enhanced subcortical auditory and audiovisual processing of speech and music. Proceedings of the National Academy of Sciences USA, 104, 15894-15898.
Miranda, R.A. & Ullman, M.T. 2007. Double dissociation between rules and memory in music: An event-related potential study. NeuroImage, 38 (2), 331-345.
http://www.sciam.com/article.cfm?chanID=sa003&articleID=39568C58-E7F2-99DF-32A49429C2B356CD&sc=WR_20071002 (1st)
http://www.sciencedaily.com/releases/2007/09/070926123908.htm (1st)
http://www.eurekalert.org/pub_releases/2007-09/gumc-tat092707.php (2nd)
August 2007
Brain network associated with cognitive reserve identified
An imaging study involving young (18-30) and older (65-80) adults has identified a brain network within the frontal lobe that is associated with cognitive reserve, the process that allows individuals to resist cognitive decline due to aging or Alzheimer’s disease. Those with higher levels of cognitive reserve were able to activate this network in the brain while working on more difficult tasks, while participants with lower levels of reserve were not able to tap into this particular network. The network was found more often in younger participants, suggesting the network may degrade during aging.
Stern, Y. et al. 2007. A Common Neural Network for Cognitive Reserve in Verbal and Object Working Memory in Young but not Old. Cerebral Cortex, Advance Access published on August 3, 2007
http://www.eurekalert.org/pub_releases/2007-08/cumc-cri082007.php
January 2007
Neural bottleneck found that thwarts multi-tasking
An imaging study has revealed just why we can’t do two things at once. The bottleneck appears to occur at the lateral frontal and prefrontal cortex and the superior frontal cortex. Both areas are known to play a critical role in cognitive control. These brain regions responded to tasks irrespective of the senses involved, and could be seen to 'queue' neural activity — that is, a response to the second task was postponed until the response to the first was completed. Such queuing occurred when two tasks were presented within 300 milliseconds of each other, but not when the time gap was longer.
Dux, P.E. et al. 2006. Isolation of a Central Bottleneck of Information Processing with Time-Resolved fMRI. Neuron, 52, 1109-1120.
http://www.eurekalert.org/pub_releases/2007-01/vu-nbf011807.php
October 2006
Brain scans reveal 'chemobrain' no figment of the imagination
A PET study of 21 women who had undergone surgery to remove breast tumors five to 10 years earlier found that the 16 who had been treated with chemotherapy regimens near the time of their surgeries to reduce the risk of cancer recurrence had specific alterations in activity of frontal cortex, cerebellum, and basal ganglia compared to 5 breast cancer patients who underwent surgery only, and 13 control subjects who did not have breast cancer or chemotherapy. The alterations suggested the chemotherapy patients’ brains were working harder to recall the same information.
Silverman, D.H.S. et al. 2006. Altered frontocortical, cerebellar, and basal ganglia activity in adjuvant-treated breast cancer survivors 5–10years after chemotherapy. Breast Cancer Research and Treatment, Published online ahead of print 29 September
http://www.eurekalert.org/pub_releases/2006-10/uoc--bn092906.php
Chemo drugs for treating breast cancer may cause changes in cognitive function
A study involving female mice confirms the existence of "chemobrain", finding mild to moderate learning and memory deficits in mice receiving methotrexate and 5-fluorouracil (5FU), two drugs widely used in women to prevent recurrence of breast cancer. The deficits extended only to those types of memory that involve the hippocampus or the frontal lobes (spatial memory and working memory, in this instance). The study only looked at short-term effects (2—4 weeks).
Winocur, G., Vardy, J., Binns, M.A., Kerr, L. & Tannock, I. 2006. The effects of the anti-cancer drugs, methotrexate and 5-fluorouracil, on cognitive function in mice. Pharmacology, Biochemistry and Behavior, 85 (1), 66-75.
http://www.eurekalert.org/pub_releases/2006-10/b-cdf102706.php
August 2006
Childhood sleep apnea linked to brain damage, lower IQ
It’s long been known that sleep apnea, characterized by fragmented sleep, interrupted breathing and oxygen deprivation, harms children's learning ability and school performance. Now a new study involving 19 children with severe obstructive sleep apnea has identified damage in the hippocampus and the right frontal cortex, and linked that to observable deficits in performance on cognitive tests. Children with OSA had an average IQ of 85 compared to 101 in matched controls. They also performed worse on standardized tests measuring executive functions, such as verbal working memory (8 versus 15) and word fluency (9.7 versus 12). Obstructive sleep apnea affects 2% of children in the United States, but it is unclear how many of these suffer from severe apnea.
Springer, M.V., McIntosh, A.R., Winocur, G. & Grady, C.L. 2005. The Relation Between Brain Activity During Memory Tasks and Years of Education in Young and Older adults. Neuropsychology and Aging, 19 (2)
http://www.eurekalert.org/pub_releases/2006-08/jhmi-csa081506.php
November 2005
Coffee jump-starts short-term memory
An imaging study of 15 males aged 26-47 has found that after consuming caffeine, all showed improved reaction times, and increased activity in part of the frontal lobe and in the anterior cingulate cortex. The findings are consistent with earlier research showing caffeine improves attention.
Koppelstätter, F. et al. 2005. Presented at the annual meeting of the Radiological Society of North America in Chicago.
http://www.eurekalert.org/pub_releases/2005-11/rson-cjs112005.php
October 2005
Changes in brain, not age, determine one's ability to focus on task
It’s been established that one of the reasons why older adults may do less well on cognitive tasks is because they have greater difficulty in ignoring distractions, which impairs their concentration. But not all older people are afflicted by this. Some are as focused as young adults. An imaging study has now revealed a difference between the brains of those people who are good at focusing, and those who are poor. Those who have difficulty screening out distractions have less white matter in the frontal lobes. They activated neurons in the left frontal lobe as well as the right. Young people and high-functioning older adults tended to use only the right frontal lobe.
Colcombe, S.J., Kramer, A.F. , Erickson, K.I. & Scalf, P. 2005. The Implications of Cortical Recruitment and Brain Morphology for Individual Differences in Inhibitory Function in Aging Humans. Psychology and Aging, 20(3), 363-375.
http://www.eurekalert.org/pub_releases/2005-10/uoia-cib102605.php
March 2005
How higher education protects older adults from cognitive decline
Research has indicated that higher education helps protect older adults from cognitive decline. Now an imaging study helps us understand how. The study compared adults from two age groups: 18-30, and over 65. Years of education ranged from 11 to 20 years for the younger group, and 8 to 21 for the older. Participants carried out several memory tasks while their brain was scanned. In young adults performing the memory tasks, more education was associated with less use of the frontal lobes and more use of the temporal lobes. For the older adults doing the same tasks, more education was associated with less use of the temporal lobes and more use of the frontal lobes. Previous research has indicated frontal activity is greater in old adults, compared to young; the new study suggests that this effect is related to the educational level in the older participants. The higher the education, the more likely the older adult is to recruit frontal regions, resulting in a better memory performance.
Springer, M.V., McIntosh, A.R., Winocur, G. & Grady, C.L. 2005. The Relation Between Brain Activity During Memory Tasks and Years of Education in Young and Older adults. Neuropsychology and Aging, 19 (2).
http://www.eurekalert.org/pub_releases/2005-03/apa-bi030705.php
January 2005
Imaging reveals brain abnormalities in ADHD children
A new type of brain imaging called diffusion tensor imaging (DTI) has provided some suggestive evidence about brain abnormalities in children diagnosed with ADHD. Abnormalities were found in the white-matter pathways in the frontal cortex, basal ganglia, brain stem and cerebellum—areas that are involved in regulating attention, impulsive behavior, motor activity, and inhibition, which are all related to ADHD symptoms.
This research was presented at the 2004 annual meeting of the Radiological Society of North America.
http://www.sciencentral.com/articles/view.htm3?article_id=218392460
December 2004
Cigarette smoking exacerbates alcohol-induced brain damage
Heavy alcohol consumption is known to cause brain damage. A new imaging study has compared 24, one-week-abstinent alcoholics (14 smokers, 10 nonsmokers) in treatment with 26 light-drinking "controls" (7 smokers, 19 nonsmokers), and found that cigarette smoking can both exacerbate alcohol-induced damage as well as independently cause brain damage. The damage is most prominent in the frontal lobes (important in planning, decision-making, and multi-tasking among other functions). Independent of alcohol consumption, cigarette smoking also had adverse effects on brain regions involved in fine and gross motor functions and balance and coordination. Roughly 80% of alcohol-dependent individuals report smoking regularly.
Durazzo, T.C., Gazdzinski, S., Banys, P. & Meyerhoff, D.J. 2004. Cigarette smoking exacerbates chronic alcohol-induced brain damage: A preliminary metabolite imaging study. Alcoholism: Clinical & Experimental Research, 28(12), 1849-1860.
http://www.eurekalert.org/pub_releases/2004-12/ace-cse120504.php
November 2004
What happens in the brain when we remember our own past?
A new imaging study has managed to distinguish between two types of autobiographical memory — the “facts” of our lives (e.g., knowing that you attended your cousin’s wedding last year), and the experiences of our lives (e.g., remembering traveling to the wedding, the events and people). As with much autobiographical memory research, the study used a diary-type procedure, whereby volunteers spent several months recording the events of their lives on a micro cassette recorder, as well as personal facts of their lives. These recordings were then played back to the volunteers while their brains were being scanned with fMRI. The results showed that the two types of autobiographical memory engaged different parts of the brain, even when the memories concerned the same contents. Recall of personal episodic memories more strongly engaged parts of the frontal lobes involved in self-awareness, as well as areas involved in visual memory.
Levine, B., Turner, G.R., Tisserand, D., Hevenor, S.J., Graham, S.J. & McIntosh, A.R. 2004. The Functional Neuroanatomy of Episodic and Semantic Autobiographical Remembering: A Prospective Functional MRI Study. Journal of Cognitive Neuroscience, 16(9), 1633-1646.
http://www.eurekalert.org/pub_releases/2004-11/bcfg-whi111604.php
July 2004
Intelligence based on the volume of gray matter in certain brain regions
Confirming earlier suggestions, the most comprehensive structural brain-scan study of intelligence to date supports an association between general intelligence and the volume of gray matter tissue in certain regions of the brain. Because these regions are located throughout the brain, a single "intelligence center" is unlikely. It is likely that a person's mental strengths and weaknesses depend in large part on the individual pattern of gray matter across his or her brain. Although gray matter amounts are vital to intelligence levels, only about 6% of the brain’s gray matter appears related to IQ — intelligence seems related to an efficient use of relatively few structures. The structures that are important for intelligence are the same ones implicated in memory, attention and language. There are also age differences: in middle age, more of the frontal and parietal lobes are related to IQ; less frontal and more temporal areas are related to IQ in the younger adults. Previous research has shown the regional distribution of gray matter in humans is highly heritable. The findings also challenge the recent view that intelligence may be a reflection of more subtle characteristics of the brain, such as the speed at which nerve impulses travel in the brain, or the number of neuronal connections present. It may of course be that all of these are factors.
Haier, R.J., Jung, R.E., Yeo, R.A., Head, K. & Alkire, M.T. 2004. Structural brain variation and general intelligence. Neuroimage. In press. http://dx.doi.org/10.1016/j.neuroimage.2004.04.025
http://www.sciencedaily.com/releases/2004/07/040720090419.htm
http://www.eurekalert.org/pub_releases/2004-07/uoc--hid071904.php
November 2003
Maturation of the human brain mapped
The progressive maturation of the human brain in childhood and adolescence has now been mapped. The initial overproduction of synapses in the gray matter that occurs after birth, is followed, for the most part just before puberty, with their systematic pruning. The mapping has confirmed that this maturation process occurs in different regions at different times, and has found that the normal gray matter loss begins first in the motor and sensory parts of the brain, and then slowly spreads downwards and forwards, to areas involved in spatial orientation, speech and language development, and attention (upper and lower parietal lobes), then to the areas involved in executive functioning, attention or motor coordination (frontal lobes), and finally to the areas that integrate these functions (temporal lobe). "The surprising thing is that the sequence in which the cortex matures appears to agree with regionally relevant milestones in cognitive development, and also reflects the evolutionary sequence in which brain regions were formed."
http://www.eurekalert.org/pub_releases/2003-11/sfn-smm110803.php
November 2002
Imaging confirms role of frontal lobes in planning
New research provides the first neuro-imaging evidence that the brain's frontal lobes play a critical role in planning and choosing actions.
Connolly, J.D., Goodale, M.A., Menon R.S. & Munoz, D.P. 2002. Human fMRI evidence for the neural correlates of preparatory set. Nature Neuroscience, 5 (12),1345–1352.
http://qnc.queensu.ca/story_loader.htm?id=3dc6a29d000a9
August 2002
How emotions interfere with staying focused
In a new imaging study, Duke University researchers have shown how emotional stimuli and "attentional functions" like driving move in parallel streams through the brain before being integrated in a specific part of the brain's prefrontal cortex (the anterior cingulate, which is located between the right and left halves). Emotional stimuli are thus more likely than simple distractions to interfere with a person's efforts to focus on a task such as driving. These findings may help us understand the neural dynamics underlying emotional distractibility on attentional tasks in affective disorders.
Yamasaki, H., LaBar, K.S. & McCarthy, G. Dissociable prefrontal brain systems for attention and emotion. Proc. Natl. Acad. Sci. USA, 99(17), 11447-51.
www.pnas.org/cgi/doi/10.1073/pnas.182176499
http://www.pnas.org/cgi/content/abstract/99/17/11447
August 2002
Identity memory area localized
An imaging study investigating brain activation when people were asked to answer yes or no to statements about themselves (e.g. 'I forget important things', 'I'm a good friend', 'I have a quick temper'), found consistent activation in the anterior medial prefrontal and posterior cingulate. This is consistent with lesion studies, and suggests that these areas of the cortex are involved in self-reflective thought.
Johnson, S.C., Baxter, L.C., Wilder, L.S., Pipe, J.G., Heiserman, J.E. & Prigatano, G.P. 2002. Neural correlates of self-reflection. Brain, 125 (8), 1808-14.
http://brain.oupjournals.org/cgi/content/abstract/125/8/1808
November 2001
Gender differences in frontal lobe neuron density
A recent study has found that women have up to 15% more brain cell density in the frontal lobe, which controls so-called higher mental processes, such as judgement, personality, planning and working memory. However, as they get older, women appear to shed cells more rapidly from this area than men. By old age, the density is similar for both sexes. It is not yet clear what impact, if any, this difference has on performance.
Witelson, S.F., Kigar, D.L. & Stoner-Beresh, H.J. 2001. Sex difference in the numerical density of neurons in the pyramidal layers of human prefrontal cortex: a stereologic study. Paper presented to the annual Society for Neuroscience meeting in San Diego, US.
http://news.bbc.co.uk/hi/english/health/newsid_1653000/1653687.stm