active learning

How taking an active role in learning enhances memory

January, 2011

Being actively involved improves learning significantly, and new research shows that the hippocampus is at the heart of this process.

We know active learning is better than passive learning, but for the first time a study gives us some idea of how that works. Participants in the imaging study were asked to memorize an array of objects and their exact locations in a grid on a computer screen. Only one object was visible at a time. Those in the "active study” group used a computer mouse to guide the window revealing the objects, while those in the “passive study” group watched a replay of the window movements recorded in a previous trial by an active subject. They were then tested by having to place the items in their correct positions. After a trial, the active and passive subjects switched roles and repeated the task with a new array of objects.

The active learners learned the task significantly better than the passive learners. Better spatial recall correlated with higher and better coordinated activity in the hippocampus, dorsolateral prefrontal cortex, and cerebellum, while better item recognition correlated with higher activity in the inferior parietal lobe, parahippocampal cortex and hippocampus.

The critical role of the hippocampus was supported when the experiment was replicated with those who had damage to this region — for them, there was no benefit in actively controlling the viewing window.

This is something of a surprise to researchers. Although the hippocampus plays a crucial role in memory, it has been thought of as a passive participant in the learning process. This finding suggests that it is actually part of an active network that controls behavior dynamically.

Reference: 

Source: 

tags: 

Topics: 

tags strategies: 

tags memworks: 

Subscribe to RSS - active learning