Older news items (pre-2010) brought over from the old website

How emotion affects memory (general)

Mixed feelings not remembered as well as happy or sad ones

A series of studies that tested participants' emotions when they faced scenarios such as taking tests and moving, events that are typically associated with mixed emotions, has found that the intensity of mixed emotions tends to be underestimated when recalling the experience. This underestimation increases over time, to the point that people sometimes don't remember having felt ambivalent at all. This is more likely among those who are uncomfortable feeling mixed emotions. Interestingly, Asian Americans in the study did not exhibit the same degree of memory decline for mixed emotions as Anglo-Americans did.

Aaker, J., Drolet, A. & Griffin, D. 2008. Recalling Mixed Emotions. Journal of Consumer Research, 35 (2), 268-278.

Emotions help memory, at the cost of other memories

Do we remember emotionally charged events better? Maybe — but at a price. A new study presented volunteers with lists of neutral words with one disturbing noun, such as murder or scream, embedded. As expected, the emotional words were much better remembered than the neutral words. More interestingly, the poorest memory occurred for neutral words that were presented immediately before the disturbing words. The effect was greater for women — women forgot those words twice as often as men.

[214] Strange, B. A., Hurlemann R., & Dolan R. J.
(2003).  An emotion-induced retrograde amnesia in humans is amygdala- and beta-adrenergic-dependent.
Proceedings of the National Academy of Sciences of the United States of America. 100(23), 13626 - 13631.

How memory helps make life pleasant

Surveys consistently show that people are generally happy with their lives. A review of research into autobiographical memory suggests why - human memory is biased toward happiness. Across 12 studies conducted by five different research teams, people of different racial and ethnic backgrounds and of different ages consistently reported experiencing more positive events in their lives than negative events, suggesting that pleasant events do in fact outnumber unpleasant events because people seek out positive experiences and avoid negative ones. Our memory also treats pleasant emotions differently from unpleasant emotions. Pleasant emotions appear to fade more slowly from our memory than unpleasant emotions. This is not repression; people do remember negative events, they just remember them less negatively. Among those with mild depression, however, unpleasant and pleasant emotions tend to fade evenly.

Walker, W.R., Skowronski, J.J. & Thompson, C.P. 2003. Life Is Pleasant -- and Memory Helps to Keep It That Way! Review of General Psychology, 7(2),203-10.

Suppressing your expression of emotion affects your memory for the event

The way people go about controlling their reactions to emotional events affects their memory of the event. In a series of experiments designed to assess the effect of suppressing the expression of emotion, it was found that, when people were shown a video of an emotional event and instructed not to let their emotions show, they had poorer memory for what was said and done than did those people who were given no such instructions. However, when shown slides of people who had been injured, people in both groups were equally good at picking which in an array of subtly different versions of each slide had been shown earlier - but when prompted to recall information that had been presented verbally with each slide, those in the suppression group again remembered fewer details. People who were asked to adopt the neutral attitude of a medical profession however, performed better than the control group on nonverbal recall, indicating the regulation of emotions via reappraisal was not associated with any memory impairment. These experimental results were supported by a naturalistic study.

[607] Richards, J. M., & Gross J. J.
(2000).  Emotion regulation and memory: The cognitive costs of keeping one's cool..
Journal of Personality and Social Psychology. 79(3), 410 - 424.


When mood affects memory

The effect of mood on memory depends on what questions are asked; only some aspects of memory are affected by incidental mood. For example, your memory of a restaurant's food won't be affected by the mood you were in when you ate it, but your memory of how much you enjoyed it will be. A new study shows that the effects of mood also depend on whether you had thought about that aspect during the experience — whether you had thought about how enjoyable the experience was at the time. In the study, people were shown a painting. Half of them were first put in a negative mood by reading and answering questions about an unpleasant subject. After looking at the painting, half were asked what they thought of it. Five days later, the participants were all asked how much they had liked the painting. While being in a negative mood had affected those who had evaluated the painting at the time, it did not affect those who had not made an evaluation at the time of presentation.

Pocheptsova, A. & Novemsky, N. 2009. When Do Incidental Mood Effects Last? Lay Beliefs versus Actual Effects. Journal of Consumer Research, Published online September 10, 2009

Perception affected by mood

An imaging study has revealed that when people were shown a composite image with a face surrounded by "place" images, such as a house, and asked to identify the gender of the face, those in whom a bad mood had been induced didn’t process the places in the background. However, those in a good mood took in both the focal and background images. These differences in perception were coupled with differences in activity in the parahippocampal place area. Increasing the amount of information is of course not necessarily a good thing, as it may result in more distraction.

[1054] Schmitz, T. W., De Rosa E., & Anderson A. K.
(2009).  Opposing Influences of Affective State Valence on Visual Cortical Encoding.
J. Neurosci.. 29(22), 7199 - 7207.

Positive mood may not help in tasks requiring attention to detail

A series of experiments with different child age groups who had happy or sad moods induced with the aid of music and selected video clips before then being asked to undertake a task that required attention to detail has found that the children induced to feel a sad or neutral mood performed the task better than those induced to feel happy. Other research has found that a positive mood is beneficial in other situations, such as when a task calls for creative thinking.

[854] Schnall, S. [1], Jaswal V. K. [2], & Rowe C. [1]
(2008).  A hidden cost of happiness in children.
Developmental Science. 11, F25-F30 - F25-F30.

Omega-3 boosts grey matter

A study of 55 healthy adults has found that those who had high levels of long-chain omega-3 fatty acids had more gray matter in areas of the brain associated with emotional arousal and regulation — the bilateral anterior cingulate cortex, the right amygdala and the right hippocampus. Although this doesn’t mean omega-3 necessarily causes such changes, the finding does support a recent study that found higher levels of omega-3 were associated with a more positive outlook, and animal studies showing that increasing omega-3 intake leads to structural changes in the brain. Good sources of omega-3 fatty acids are walnuts, flax, and fatty fish such as salmon and sardines.

The findings were presented March 7 at the American Psychosomatic Society's Annual Meeting, in Budapest, Hungary.

Insight into the processes of 'positive' and 'negative' learners

An intriguing study of the electrical signals emanating from the brain has revealed two types of learners. A brainwave event called an "event-related potential" (ERP) is important in learning; a particular type of ERP called "error-related negativity" (ERN), is associated with activity in the anterior cingulate cortex. This region is activated during demanding cognitive tasks, and ERNs are typically more negative after participants make incorrect responses compared to correct choices. Unexpectedly, studies of this ERN found a difference between "positive" learners, who perform better at choosing the correct response than avoiding the wrong one, and "negative" learners, who learn better to avoid incorrect responses. The negative learners showed larger ERNs, suggesting that "these individuals are more affected by, and therefore learn more from, their errors.” Positive learners had larger ERNs when faced with high-conflict win/win decisions among two good options than during lose/lose decisions among two bad options, whereas negative learners showed the opposite pattern.

[818] Frank, M. J., Woroch B. S., & Curran T.
(2005).  Error-Related Negativity Predicts Reinforcement Learning and Conflict Biases.
Neuron. 47(4), 495 - 501.

Positive emotions help people see big picture details

A study involving 89 students, who watched a video designed to induce either joy and laughter, anxiety, or no emotion, found that those who were in a positive mood had a far greater ability to recognize members of another race when briefly shown photos of individuals. In the absence of positive emotions, subjects recognized members of their own race 75% of the time but only recognized members of another race 65% of the time. Their ability to recognize members of their own race was unaffected by their emotional state.

[2551] Johnson, K. J., & Fredrickson B. L.
(2005).  “We All Look the Same to Me”.
Psychological Science. 16(11), 875 - 881.

Mood affects eyewitness accuracy and reasoning

A new study suggests people in a negative mood provide more accurate eyewitness accounts than people in a positive mood state. Moreover, people in a positive mood showed poorer judgment and critical thinking skills than those in a negative mood. The researchers suggest that a negative mood state triggers more systematic and attentive, information processing, while good moods signal a benign, non-threatening environment where we don't need to be so vigilant.

[2550] Forgas, J. P., Laham S. M., & Vargas P. T.
(2005).  Mood effects on eyewitness memory: Affective influences on susceptibility to misinformation.
Journal of Experimental Social Psychology. 41(6), 574 - 588.

Excitement helps memory for unrelated events

We’ve long known that emotionally charged events are easier to remember than boring ones. New research suggests that the reason is the flood of emotion, not the personal meaningfulness of the event. Subjects asked to memorize a list of words did better if they subsequently watched a gory film of a bloody dental extraction, rather than a dull video on tooth brushing.

Nielson, K.A., Yee, D. & Erickson, K.I. 2002. Modulation of memory storage processes by post-training emotional arousal from a semantically unrelated source. Paper presented at the Society for Neuroscience annual meeting in Orlando, Florida, 4 November.

Mood needs to be matched to cognitive task for best performance

An imaging study looked at the brain activity of 14 college-aged men and women as they performed difficult cognitive tasks requiring the active retention of information in working memory, after watching short, emotional videos, designed to elicit one of three emotional states: pleasant, neutral or anxious. It was found that mild anxiety improved performance on some tasks, but hurt performance on others. Being in a pleasant mood boosted some kinds of performance but impaired other kinds. A region of the prefrontal cortex was jointly influenced by a combination of mood state and cognitive task, but not by either one alone.

[227] Gray, J. R., Braver T. S., & Raichle M. E.
(2002).  Integration of emotion and cognition in the lateral prefrontal cortex.
Proceedings of the National Academy of Sciences of the United States of America. 99(6), 4115 - 4120.

Brain study shows how surprises help us learn

Because they are hard to forget, surprises can help us learn. Now scientists have identified a part of the brain that may be involved in learning from surprises. A team led by Dr. Paul C. Fletcher at the University of Cambridge monitored the brain activity in a group of volunteers who were participating in a simulation exercise. The participants pretended to work at drug companies and were asked to predict whether a particular fictitious drug would trigger a particular fictitious syndrome. In the early phase of the study, when the participants were not familiar with the effects of the various drugs, imaging tests detected high levels of activity in this part of the brain. As the volunteers became familiar with the effects of the drugs, so that they were no longer surprised by the results, activity in the dorsolateral prefrontal cortex declined, but later in the study, this region became more active when the participants were surprised by unexpected responses.

[1329] Fletcher, P. C., Anderson J. M., Shanks D. R., Honey R., Carpenter T. A., Donovan T., et al.
(2001).  Responses of human frontal cortex to surprising events are predicted by formal associative learning theory.
Nat Neurosci. 4(10), 1043 - 1048.

Motivation & attitude

Confidence as important as IQ in exam success

I’ve talked repeatedly about the effects of self-belief on memory and cognition. One important area in which this is true is that of academic achievement. Evidence indicates that your perceived abilities matter, just as much? more than? your actual abilities. It has been assumed that self perceived abilities, self-confidence if you will, is a product mainly of nurture. Now a new twin study provides evidence that nurture / environment may only provide half the story; the other half may lie in the genes. The study involved 1966 pairs of identical twins and 1877 pairs of fraternal twins. The next step is to tease out which of these genes are related to IQ and which to personality variables.

[1080] Greven, C. U., Harlaar N., Kovas Y., Chamorro-Premuzic T., & Plomin R.
(2009).  More Than Just IQ: School Achievement Is Predicted by Self-Perceived Abilities—But for Genetic Rather Than Environmental Reasons.
Psychological Science. 20(6), 753 - 762.

Anticipation strengthens memory

An imaging study has revealed that the amygdala and the hippocampus become activated when a person is anticipating a difficult situation (some type of gruesome picture). Moreover, the higher the level of activation during this anticipation, the better the pictures were remembered two weeks later. The study demonstrates how expectancy can affect long-term memory formation, and suggests that the greater our anxiety about a situation, the better we’ll remember that situation. If it’s an unpleasant one, this will only reinforce the anxiety, setting up a vicious cycle. The study has important implications for the treatment of psychological conditions such as post-traumatic stress disorder and social anxiety.

[354] Mackiewicz, K. L., Sarinopoulos I., Cleven K. L., & Nitschke J. B.
(2006).  The effect of anticipation and the specificity of sex differences for amygdala and hippocampus function in emotional memory.
Proceedings of the National Academy of Sciences. 103(38), 14200 - 14205.

Why motivation helps memory

An imaging study has identified the brain region involved in anticipating rewards — specific brain structures in the mesolimbic region involved in the processing of emotions — and revealed how this reward center promotes memory formation. Cues to high-reward scenes that were later remembered activated the reward areas of the mesolimbic region as well as the hippocampus. Anticipatory activation also suggests that the brain actually prepares in advance to filter incoming information rather than simply reacting to the world.

[1254] Adcock, A. R., Thangavel A., Whitfield-Gabrieli S., Knutson B., & Gabrieli J. D. E.
(2006).  Reward-Motivated Learning: Mesolimbic Activation Precedes Memory Formation.
Neuron. 50(3), 507 - 517.

Different brain regions for arousing and non-arousing words

An imaging study has found that words representing arousing events (e.g., “rape”, “slaughter”) activate cells in the amygdala, while nonarousing words (e.g., “sorrow”, “mourning”) activated cells in the prefrontal cortex. The hippocampus was active for both type of words. On average, people remembered more of the arousing words than the others, suggesting stress hormones, released as part of the response to emotionally arousing events, are responsible for enhancing memories of those events.

Kensinger, E.A. & Corkin, S. 2004. Two routes to emotional memory: Distinct neural processes for valence and arousal. PNAS, 101, 3310-3315. Published online before print February 23 2004, 10.1073/pnas.0306408101


Gender & age effects

When emotions involved, older adults may perform memory tasks better than young adults

A study involving 72 young adults (20-30 years old) and 72 older adults (60-75) has found that regulating emotions – such as reducing negative emotions or inhibiting unwanted thoughts – is a resource-demanding process that disrupts the ability of young adults to simultaneously or subsequently perform tasks, but doesn’t affect older adults. In the study, most of the participants watched a two-minute video designed to induce disgust, while the rest watched a neutral two-minute clip. Participants then played a computer memory game. Before playing 2 further memory games, those who had watched the disgusting video were instructed either to change their negative reaction into positive feelings as quickly as possible or to maintain the intensity of their negative reaction, or given no instructions. Those young adults who had been told to turn their disgust into positive feelings, performed significantly worse on the subsequent memory tasks, but older adults were not affected. The feelings of disgust in themselves did not affect performance in either group. It’s speculated that older adults’ greater experience allows them to regulate their emotions without cognitive effort.

[200] Scheibe, S., & Blanchard-Fields F.
(2009).  Effects of regulating emotions on cognitive performance: what is costly for young adults is not so costly for older adults.
Psychology and Aging. 24(1), 217 - 223.

Aging brains allow negative memories to fade

Another study has found that older adults (average age 70) remember fewer negative images than younger adults (average age 24), and that this has to do with differences in brain activity. When shown negative images, the older participants had reduced interactions between the amygdala and the hippocampus, and increased interactions between the amygdala and the dorsolateral frontal cortex. It seems that the older participants were using thinking rather than feeling processes to store these emotional memories, sacrificing information for emotional stability. The findings are consistent with earlier research showing that healthy seniors are able to regulate emotion better than younger people.

[680] St Jacques, P. L., Dolcos F., & Cabeza R.
(2009).  Effects of aging on functional connectivity of the amygdala for subsequent memory of negative pictures: a network analysis of functional magnetic resonance imaging data.
Psychological Science: A Journal of the American Psychological Society / APS. 20(1), 74 - 84.

Emotions help memory, at the cost of other memories

Do we remember emotionally charged events better? Maybe — but at a price. A new study presented volunteers with lists of neutral words with one disturbing noun, such as murder or scream, embedded. As expected, the emotional words were much better remembered than the neutral words. More interestingly, the poorest memory occurred for neutral words that were presented immediately before the disturbing words. The effect was greater for women — women forgot those words twice as often as men.

[214] Strange, B. A., Hurlemann R., & Dolan R. J.
(2003).  An emotion-induced retrograde amnesia in humans is amygdala- and beta-adrenergic-dependent.
Proceedings of the National Academy of Sciences of the United States of America. 100(23), 13626 - 13631.

Why women better remember emotional memories

A new brain imaging study reveals gender differences in the encoding of emotional memories. We have long known that women are better at remembering emotional memories, now we can see that the sexes tend to encode emotional experiences in different parts of the brain. In women, it seems that evaluation of emotional experience and encoding of the memory is much more tightly integrated.

[807] Canli, T., Desmond J. E., Zhao Z., & Gabrieli J. D. E.
(2002).  Sex differences in the neural basis of emotional memories.
Proceedings of the National Academy of Sciences of the United States of America. 99(16), 10789 - 10794.

Older adults better at forgetting negative images

It seems that this general tendency, to remember the good, and let the bad fade, gets stronger as we age. Following recent research suggesting that older people tend to regulate their emotions more effectively than younger people, by maintaining positive feelings and lowering negative feelings, researchers examined age differences in recall of positive, negative and neutral images of people, animals, nature scenes and inanimate objects. The first study tested 144 participants aged 18-29, 41-53 and 65-80. Older adults recalled fewer negative images relative to positive and neutral images. For the older adults, recognition memory also decreased for negative pictures. As a result, the younger adults remembered the negative pictures better. Preliminary brain research suggests that in older adults, the amygdala is activated equally to positive and negative images, whereas in younger adults, it is activated more to negative images. This suggests that older adults encode less information about negative images, which in turn would diminish recall.

[343] Charles, S T., Mather M., & Carstensen L. L.
(2003).  Aging and Emotional Memory: The Forgettable Nature of Negative Images for Older Adults.
Journal of Experimental Psychology: General. 132(2), 310 - 324.

Gender & race stereotypes


Nasal spray boosts consolidation of emotional memory

A study in which 17 healthy young men were given a nasal spray of either interleukin-6 or a placebo after reading a short story (emotional on one occasion; neutral on the other) before going to bed, has found that those given the immune system molecule showed improved memory for emotional text (but not other kinds of material). Interleukin-6 is involved in inflammatory responses, but recently has also been implicated in memory consolidation during sleep. This finding supports that role, and demonstrates an interaction between the immune system and the central nervous system.

[811] Benedict, C., Scheller J., Rose-John S., Born J., & Marshall L.
(2009).  Enhancing influence of intranasal interleukin-6 on slow-wave activity and memory consolidation during sleep.
FASEB J.. 23(10), 3629 - 3636.

Sleep selectively preserves emotional memories

It’s now generally accepted that sleep plays an important role in consolidating procedural (skill) memories, but the position regarding other types of memory has been less clear.  A new study has found that sleep had an effect on emotional aspects of a memory. The study involved showing 88 students neutral scenes (such as a car parked on a street in front of shops) or negative scenes (a badly crashed car parked on a similar street). They were then tested for their memories of both the central objects in the pictures and the backgrounds in the scenes, either after 12 daytime hours, or 12 night-time hours, or 30 minutes after viewing the images, in either the morning or evening.  Those tested after 12 daytime hours largely forgot the entire negative scene, forgetting both the central objects and the backgrounds equally. But those tested after a night’s sleep remembered the emotional item (e.g., the smashed car) as well as those who were tested only 30 minutes later. Their memory of the neutral background was however, as bad as the daytime group. The findings are consistent with the view that the individual components of emotional memory become 'unbound' during sleep, enabling the brain to selectively preserve only that information it considers important.

[875] Payne, J. D., Stickgold R., Swanberg K., & Kensinger E. A.
(2008).  Sleep preferentially enhances memory for emotional components of scenes.
Psychological Science: A Journal of the American Psychological Society / APS. 19(8), 781 - 788.

Why emotion enhances memory

We know that emotion can increase the memorability of events, but we haven’t known exactly why it does so. Now a new study reveals that during emotional arousal, the stress hormone norepinephrine makes synapses dramatically more sensitive by increasing the number of GluR1 receptors.

[423] Hu, H., Real E., Takamiya K., Kang M-G., Ledoux J., Huganir R. L., et al.
(2007).  Emotion Enhances Learning via Norepinephrine Regulation of AMPA-Receptor Trafficking.
Cell. 131(1), 160 - 173.

How emotions interfere with memory

We know emotion can interfere with cognitive processes. Now an imaging study adds to our understanding of how that occurs. Emotional images evoked strong activity in typical emotional processing regions (amygdala and ventrolateral prefrontal cortex) while simultaneously deactivating regions involved in memory processing (dorsolateral prefrontal cortex and lateral parietal cortex). The researchers also found individual differences among the subjects in their response to the images. People who showed greater activity in a brain region associated with the inhibition of response to emotional stimuli rated the emotional distracters as less distracting.

[270] Dolcos, F., & McCarthy G.
(2006).  Brain Systems Mediating Cognitive Interference by Emotional Distraction.
J. Neurosci.. 26(7), 2072 - 2079.

Different aspects of attention located in different parts of the brain

We all know attention is important, but we’ve never been sure exactly what it is. Recent research suggests there’s good reason for this – attention appears to be multi-faceted, far less simple than originally conceived. Patients with specific lesions in the frontal lobes and other parts of the brain have provided evidence that different types of attentional problems are associated with injuries in different parts of the brain, suggesting that attention is not, as has been thought, a global process. The researchers have found evidence for at least three distinct processes, each located in different parts of the frontal lobes. These are: (1) a system that helps us maintain a general state of readiness to respond, in the superior medial frontal regions; (2) a system that sets our threshold for responding to an external stimulus, in the left dorsolateral region; and (3) a system that helps us selectively attend to appropriate stimuli, in the right dorsolateral region.

[260] Stuss, D. T., Binns M. A., Murphy K. J., & Alexander M. P.
(2002).  Dissociations within the anterior attentional system: effects of task complexity and irrelevant information on reaction time speed and accuracy.
Neuropsychology. 16(4), 500 - 513.

How emotions interfere with staying focused

In a new imaging study, Duke University researchers have shown how emotional stimuli and "attentional functions" like driving move in parallel streams through the brain before being integrated in a specific part of the brain's prefrontal cortex (the anterior cingulate, which is located between the right and left halves). Emotional stimuli are thus more likely than simple distractions to interfere with a person's efforts to focus on a task such as driving. These findings may help us understand the neural dynamics underlying emotional distractibility on attentional tasks in affective disorders.

[835] Yamasaki, H., LaBar K. S., & McCarthy G.
(2002).  Dissociable prefrontal brain systems for attention and emotion.
Proceedings of the National Academy of Sciences of the United States of America. 99(17), 11447 - 11451.

Cerebellum implicated in remembering emotions

The part of the brain known as the cerebellum has been most closely associated with motor coordination skills. Experiments with rats suggest that it may also be involved in remembering strong emotions, in particular, in the consolidation of long-term memories of fear.

[763] Sacchetti, B., Baldi E., Lorenzini C A., & Bucherelli C.
(2002).  Cerebellar role in fear-conditioning consolidation.
Proceedings of the National Academy of Sciences of the United States of America. 99(12), 8406 - 8411.

Amygdala may be critical for allowing perception of emotionally significant events despite inattention

We choose what to pay attention to, what to remember. We give more weight to some things than others. Our perceptions and memories of events are influenced by our preconceptions, and by our moods. Researchers at Yale and New York University have recently published research indicating that the part of the brain known as the amygdala is responsible for the influence of emotion on perception. This builds on previous research showing that the amygdala is critically involved in computing the emotional significance of events. The amygdala is connected to those brain regions dealing with sensory experiences, and the theory that these connections allow the amygdala to influence early perceptual processing is supported by this research. Dr. Anderson suggests that “the amygdala appears to be critical for the emotional tuning of perceptual experience, allowing perception of emotionally significant events to occur despite inattention.”

[968] Anderson, A. K., & Phelps E. A.
(2001).  Lesions of the human amygdala impair enhanced perception of emotionally salient events.
Nature. 411(6835), 305 - 309.

tags memworks: 

The effect of stress on performance depends on individual and situational factors

September, 2011

A new study shows how stress only impacts math performance in those with both higher working memory capacity and math anxiety, while another shows that whether or not pressure impacts your performance depends on the nature of the pressure and the type of task.

Working memory capacity and level of math anxiety were assessed in 73 undergraduate students, and their level of salivary cortisol was measured both before and after they took a stressful math test.

For those students with low working memory capacity, neither cortisol levels nor math anxiety made much difference to their performance on the test. However, for those with higher WMC, the interaction of cortisol level and math anxiety was critical. For those unafraid of math, the more their cortisol increased during the test, the better they performed; but for those anxious about math, rising cortisol meant poorer performance.

It’s assumed that low-WMC individuals were less affected because their performance is lower to start with (this shouldn’t be taken as an inevitability! Low-WMC students are disadvantaged in a domain like math, but they can learn strategies that compensate for that problem). But the effect on high-WMC students demonstrates how our attitude and beliefs interact with the effects of stress. We may all have the same physiological responses, but we interpret them in different ways, and this interpretation is crucial when it comes to ‘higher-order’ cognitive functions.

Another study investigated two theories as why people choke under pressure: (a) they’re distracted by worries about the situation, which clog up their working memory; (b) the stress makes them pay too much attention to their performance and become self-conscious. Both theories have research backing from different domains — clearly the former theory applies more to the academic testing environment, and the latter to situations involving procedural skill, where explicit attention to the process can disrupt motor sequences that are largely automatic.

But it’s not as simple as one effect applying to the cognitive domain, and one to the domain of motor skills, and it’s a little mysterious why pressure could have too such opposite effects (drawing attention away, or toward). This new study carried out four experiments in order to define more precisely the characteristics of the environment that lead to these different effects, and suggest solutions to the problem.

In the first experiment, participants were given a category learning task, in which some categories had only one relevant dimension and could be distinguished according to one easily articulated rule, and others involved three relevant dimensions and one irrelevant one. Categorization in this case was based on a complex rule that would be difficult to verbalize, and so participants were expected to integrate the information unconsciously.

Rule-based category learning was significantly worse when participants were also engaged in a secondary task requiring them to monitor briefly appearing letters. However it was not affected when their secondary task involved them explicitly monitoring the categorization task and making a confidence judgment. On the other hand, the implicit category learning task was not disrupted by the letter-monitoring task, but was impaired by the confidence-judgment task. Further analysis revealed that participants who had to do the confidence-judgment task were less likely to use the best strategy, but instead persisted in trying to verbalize a one- or two-dimension rule.

In the second experiment, the same tasks were learned in a low-pressure baseline condition followed by either a low-pressure control condition or one of two high-pressure conditions. One of these revolved around outcome — participants would receive money for achieving a certain level of improvement in their performance. The other put pressure on the participants through monitoring — they were watched and videotaped, and told their performance would be viewed by other students and researchers.

Rule-based category learning was slower when the pressure came from outcomes, but not when the pressure came from monitoring. Implicit category learning was unaffected by outcome pressure, but worsened by monitoring pressure.

Both high-pressure groups reported the same levels of pressure.

Experiment 3 focused on the detrimental combinations — rule-based learning under outcome pressure; implicit learning under monitoring pressure — and added the secondary tasks from the first experiment.

As predicted, rule-based categories were learned more slowly during conditions of both outcome pressure and the distracting letter-monitoring task, but when the secondary task was confidence-judgment, the negative effect of outcome pressure was counteracted and no impairment occurred. Similarly, implicit category learning was slowed when both monitoring pressure and the confidence-judgment distraction were applied, but was unaffected when monitoring pressure was counterbalanced by the letter task.

The final experiment extended the finding of the second experiment to another domain — procedural learning. As expected, the motor task was significantly affected by monitoring pressure, but not by outcome pressure.

These findings suggest two different strategies for dealing with choking, depending on the situation and the task. In the case of test-taking, good test preparation and a writing exercise can boost performance by reducing anxiety and freeing up working memory. If you're worried about doing well in a game or giving a memorized speech in front of others, you instead want to distract yourself so you don't become focused on the details of what you're doing.



tags memworks: 


tags study: 

tags problems: 

Stereotype threat's effect on black students' academic achievement

August, 2011

Another study on the dramatic impact of stereotype threat on academic achievement, and how you can counter it.

In a two-part experiment, Black and White students studied the definitions of 24 obscure English words, and were later tested, in threatening or non-threatening environments. In the threatening study environment, students were told that the task would assess their "learning abilities and limitations" and "how well people from different backgrounds learn”. In the non-threatening environment, students were told that the study focused on identifying "different learning styles". When tested one to two weeks later, students were first given a low-stress warm-up exercise with half of the word definitions. Then, in order to evoke concerns about stereotypes, a test was given which was described as evaluating "your ability to learn verbal information and your performance on problems requiring verbal reasoning ability".

The effect of these different environments on the Black students was dramatic. On the non-threatening warm-up test, Black students who had studied in the threatening learning environment performed about 50% worse than Black students who had studied in the non-threatening environment. But on the ‘real’ test, for which stereotypes had been evoked, all the Blacks — including those who had done fine on the warm-up — did poorly.

In the second experiment, only Black students were involved, and they all studied in the threatening environment. This time, however, half of the students were asked to begin with a "value affirmation" exercise, during which they chose values that mattered most to them and explained why. The other students were asked to write about a value that mattered little to them. A week later, students did the warm-up and the test. Black students who had written about a meaningful value scored nearly 70% better on the warm-up than black students who had written about other values.


[2348] Taylor, V J., & Walton G. M.
(2011).  Stereotype Threat Undermines Academic Learning.
Personality and Social Psychology Bulletin. 37(8), 1055 - 1067.



tags memworks: 


Air pollution impacts cognitive performance

July, 2011

A study of Michigan public schools, and a mouse study, add to growing evidence that high levels of air pollution negatively affect learning and memory.

Following several recent studies pointing to the negative effect of air pollution on children’s cognitive performance (see this April 2010 news report and this May 2011 report), a study of public schools in Michigan has found that 62.5% of the 3660 schools in the state are located in areas with high levels of industrial pollution, and those in areas with the highest industrial air pollution levels had the lowest attendance rates and the highest proportions of students who failed to meet state educational testing standards in English and math. Attendance rates are a potential indicator of health levels.

Minority students were especially hit by this — 81.5% of African American and 62.1% of Hispanic students attend schools in the top 10% of the most polluted areas, compared to 44.4% of white students.

Almost all (95%) of the industrial air pollution around schools comes from 12 chemicals (diisocyanates, manganese, sulfuric acid, nickel, chlorine, chromium, trimethylbenzene, hydrochloric acid, molybdenum trioxide, lead, cobalt and glycol ethers) that are all implicated in negative health effects, including increased risk of respiratory, cardiovascular, developmental and neurological disorders, as well as cancer.

There are potentially two issues here: the first is that air pollution causes health issues which lower school attendance and thus impacts academic performance; the other is that the pollution also directly effects the brain, thus affecting cognitive performance.

A new mouse study looking at the effects of air pollution on learning and memory has now found that male mice exposed to polluted air for six hours a day, five days a week for 10 months (nearly half their lifespan), performed significantly more poorly on learning and memory tasks than those male mice living in filtered air. They also showed more signs of anxiety- and depressive-like behaviors.

These changes in behavior and cognition were linked to clear differences in the hippocampus — those exposed to polluted air had fewer dendritic spines in parts of the hippocampus (CA1 and CA3 regions), shorter dendrites and overall reduced cell complexity. Previous mouse research has also found that such pollution causes widespread inflammation in the body, and can be linked to high blood pressure, diabetes and obesity. In the present study, the same low-grade inflammation was found in the hippocampus. The hippocampus is particularly sensitive to damage caused by inflammation.

The level of pollution the mice were exposed to was equivalent to what people may be exposed to in some polluted urban areas.




tags memworks: 

tags problems: 


tags development: 

tags lifestyle: 

Mindfulness meditation training changes brain structure in 8 weeks

February, 2011

After 8 weeks practicing mindfulness meditation, measurable changes occurred in brain regions associated with memory and emotion.

Brain images of 16 participants in an 8-week mindfulness meditation program, taken two weeks before and after the program, have found measurable changes in brain regions associated with memory, sense of self, empathy and stress. Specifically, they showed increased grey-matter density in the left hippocampus, posterior cingulate cortex, temporo-parietal junction, and cerebellum, as well as decreased grey-matter density in the amygdala. Similar brain scans of a control group of non-meditators (those on a waiting list for the program) showed no such changes over time.

Although a number of studies have found differences in the brains of experienced meditators and those who don’t practice meditation, this is the first to demonstrate that those differences are actually produced by meditation.

The Mindfulness-Based Stress Reduction program involved weekly meetings that included practice of mindfulness meditation and audio recordings for guided meditation practice. Participants reported spending an average of 27 minutes each day practicing mindfulness exercises.



tags memworks: 

tags strategies: 


Easy Solution for Test Anxiety

January, 2011

New research has come up with a very easy remedy for those who sabotage themselves in exams by being over-anxious — spend a little time writing out your worries just before the test.

It’s well known that being too anxious about an exam can make you perform worse, and studies indicate that part of the reason for this is that your limited working memory is being clogged up with thoughts related to this anxiety. However for those who suffer from test anxiety, it’s not so easy to simply ‘relax’ and clear their heads. But now a new study has found that simply spending 10 minutes before the exam writing about your thoughts and feelings can free up brainpower previously occupied by testing worries.

In the first laboratory experiments, 20 college students were given two math tests. After the first test, the students were told that there would be a monetary reward for high marks — from both them and the student they had been paired with. They were then told that the other student had already sat the second test and improved their score, increasing the pressure. They were also they’d be videotaped, and their performance analyzed by teachers and students. Having thus upped the stakes considerably, half the students were given 10 minutes to write down any concerns they had about the test, while the other half were just given 10 minutes to sit quietly.

Under this pressure, the students who sat quietly did 12% worse on the second test. However those who wrote about their fears improved by 5%. In a subsequent experiment, those who wrote about an unrelated unemotional event did as badly as the control students (a drop of 7% this time, vs a 4% gain for the expressive writing group). In other words, it’s not enough to simply write, you need to be expressing your worries.

Moving out of the laboratory, the researchers then replayed their experiment in a 9th-grade classroom, in two studies involving 51 and 55 students sitting a biology exam. The students were scored for test anxiety six weeks before the exam. The control students were told to write about a topic that wouldn’t be covered in the exam (this being a common topic in one’s thoughts prior to an exam). It was found that those who scored high in test anxiety performed poorly in the control condition, but at the level of those low in test anxiety when in the expressive writing condition (improving their own performance by nearly a grade point). Those who were low in test anxiety performed at the same level regardless of what they wrote about prior to the exam.

One of the researchers, Sian Beilock, recently published a book on these matters: Choke: What the Secrets of the Brain Reveal About Getting It Right When You Have To



tags memworks: 

tags study: 


Damage to amygdala can be compensated by another region

September, 2010

A memory function thought to require a specific brain region called the amygdala has now been found to be able to be performed by another region, if the amygdala is impaired.

A number of studies in recent years have revealed the amazing ability of the human brain to compensate for damage down to its part. In the latest of these, it’s been found that loss of the amygdala doesn’t have to mean that new memories will be void of emotion. Instead, it appears, a region called the bed nuclei can step in to take its place. The bed nuclei are slower to process information than the amygdala, and in normal circumstances are inhibited by the amygdala. The study looked specifically at fear conditioning, for which the amygdala has been considered crucial.

The finding offers the hope that therapies to promote compensatory shifts in function might help those who have suffered damage to parts of their brain.





tags problems: 

tags memworks: 

Negative stereotypes affect learning, not just performance

August, 2010

Following on from several studies showing that being reminded of a negative stereotype for your group (be it race or gender) affects your test performance, a new study shows it also impairs learning.

A number of studies have demonstrated that negative stereotypes (such as “women are bad at math”) can impair performance in tests. Now a new study shows that this effect extends to learning. The study involved learning to recognize target Chinese characters among sets of two or four. Women who were reminded of the negative stereotypes involving women's math and visual processing ability failed to improve at this search task, while women who were not reminded of the stereotype got faster with practice. When participants were later asked to choose which of two colored squares, imprinted with irrelevant Chinese characters, was more saturated, those in the control group were slower to respond when one of the characters had been a target. However, those trained under stereotype threat showed no such effect, indicating that they had not learned to automatically attend to a target. It’s suggested that the women in the stereotype threat group tried too hard to overcome the negative stereotype, expending more effort but in an unproductive manner.

There are two problems here, it seems. The first is that people under stereotype threat have more invested in disproving the stereotype, and their efforts may be counterproductive. The second, that they are distracted by the stereotype (which uses up some of their precious working memory).


[1686] Rydell, R. J., Shiffrin R. M., Boucher K. L., Van Loo K., & Rydell M. T.
(2010).  Stereotype threat prevents perceptual learning.
Proceedings of the National Academy of Sciences.


tags memworks: 


tags problems: 

tags study: 


Women teachers transfer their fear of doing math to girls

January, 2010

A study involving first- and second-grade teachers found that boys' math performance was not related to their (female) teacher's math anxiety while girls' math achievement was.

Consistent with studies showing that gender stereotypes can worsen math performance in females, a year-long study involving 17 first- and second-grade teachers and their 52 boy and 65 girl students has found that boys' math performance was not related to their (female) teacher's math anxiety while girls' math achievement was. Early elementary school teachers in the United States are almost exclusively female. Math achievement was unrelated to teacher math anxiety in both boys and girls at the beginning of the school year. Moreover, achievement was negatively associated with belief in gender stereotypes. Girls who confirmed a belief that boys are better in math than girls scored six points lower in math achievement than did boys or girls who had not developed a belief in the stereotype (102 versus 108). Research has found that elementary education majors have the highest rate of mathematics anxiety of any college major.


[1450] Beilock, S. L., Gunderson E. A., Ramirez G., & Levine S. C.
(2010).  Female teachers’ math anxiety affects girls’ math achievement.
Proceedings of the National Academy of Sciences. 107(5), 1860 - 1863.


tags development: 


tags study: 

tags memworks: 

Letters A and F affect test scores

February, 2010

In another demonstration of the many factors that affect exam success, three experiments have found that seeing the letter A before an exam makes a student more likely to perform better than if he sees the letter F instead.

In another demonstration of the many factors that affect exam success, three experiments involving a total of 131 college students have found that seeing the letter A before an exam makes a student more likely to perform better than if he sees the letter F instead. In the first experiment, 23 undergraduates took a word-analogies test, of which half were labeled "Test Bank ID: F" in the top right corner, and half "Test Bank ID: A". The A group got an average of 11.08 of 12 answers correct, compared to 9.42 for the F group. The same pattern was confirmed in two more studies. Moreover, performance of students whose exams were labeled "Test Bank ID:J" fell between those with the A and F test papers. While hard to believe, these findings are consistent with the many findings supporting the idea of "stereotype threat" (the tendency to do less well on a test when a person fears their performance could confirm a negative stereotype about their racial or gender group).


[154] Ciani, K. D. [1], & Sheldon K. M. [2]
(2010).  A versus F: The effects of implicit letter priming on cognitive performance.
British Journal of Educational Psychology. 80, 99 - 119.


tags memworks: 


tags study: 

tags strategies: 


Subscribe to RSS - anxiety