attention problems

This brain training program cuts dementia risk

  • A large 10-year study investigating the benefits of a brain training program for older adults found that training designed to improve processing speed & visual attention in particular reduced dementia risk.

Findings from the Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) Study, which followed 2,802 healthy older adults for 10 years, has found that those who participated in computer training designed to improve processing speed and visual attention had a 29% lower risk of developing dementia compared to controls, with more training producing lower risk. Those who received instruction in memory or reasoning strategies showed no change in dementia risk.

Participants were randomly placed into a control group or one of three different cognitive training groups. One was instructed in memory strategies, another in reasoning strategies, and one was given individualized, computerized speed of processing training.

There were 10 initial sessions of training, each 60 to 75 minutes, over six weeks. Participants were assessed at the beginning of the study, after the first six weeks, and at one, two, three, five, and 10 years. Some of each group received four additional “booster” training sessions in months 11 and 35.

Among those who completed the most sessions (5 or more booster sessions), indicators of dementia were evident in 5.9% of the computerized speed training group; 9.7% of the memory strategy group; 10.1% of the reasoning strategy group. The control group had a dementia incidence rate of 10.8%.

14% of those who received no training developed dementia in the next 10 years, compared with 12.1% of those who received the initial processing speed training, and 8.2% of those who also received the additional booster training.

A decade after training began, the scientists found that 22.7% of people in the speed training group had dementia, compared with 24.2% in both memory and reasoning groups. In a control group of people who had no training, the dementia rate was 28.8%. This effect is greater than the protection offered by antihypertensive medications against major cardiovascular events.

It's suggested that some of the reason for this effect may be that the training builds up brain reserve, perhaps by improving brain efficiency, or in some way improving the health of brain tissue.

Some of the participants told researchers that the training encouraged them to enroll in classes at a local college or keep driving, and it’s possible that the motivational boost for continued social and intellectual engagement might also help explain the benefits.

Other research has found that processing speed training is associated with a lower risk of depression and improved physical function, as well as better everyday functioning.

The processing speed training was designed to improve the speed and accuracy of visual attention, with both divided and selective attention exercises. To perform the divided attention training task, participants identified a central object—such as a truck—while simultaneously locating a target in the periphery—the car. The speed of these objects became increasingly faster as participants mastered each set. In the more difficult training tasks, adding distracting objects made the task even more challenging, thus engaging selective attention.

The training program is available as the “Double Decision” exercise in the BrainHQ.com commercial product.

Of the 1220 who completed the 10-year follow-up, 260 developed dementia during the period.

http://www.futurity.org/speed-of-processing-training-dementia-1613322/

https://www.eurekalert.org/pub_releases/2017-11/uosf-ibf111417.php

https://www.theguardian.com/society/2017/nov/16/can-brain-training-reduce-dementia-risk-despite-new-research-the-jury-is-still-out

http://www.scientificamerican.com/article/brain-training-cuts-dementia-risk-a-decade-later/

Reference: 

[4490] Edwards, J. D., Xu H., Clark D. O., Guey L. T., Ross L. A., & Unverzagt F. W.
(2017).  Speed of processing training results in lower risk of dementia.
Alzheimer's & Dementia: Translational Research & Clinical Interventions. 3(4), 603 - 611.

Full text available at https://www.trci.alzdem.com/article/S2352-8737(17)30059-8/fulltext

Source: 

Topics: 

tags development: 

tags lifestyle: 

tags problems: 

tags strategies: 

Absentmindedness can be an early warning sign of silent strokes

  • A small study found that older adults with white matter damage caused by silent strokes noticed poorer attention and distractability.

A study involving 54 older adults (55-80), who possessed at least one risk factor for a stroke, found that those with white matter damage caused by silent strokes reported poor attentiveness and being distracted more frequently on day-to-day tasks. Despite these complaints, about half of these people scored within the normal range on tests of attention and executive function.

It’s suggested that adults who notice that they frequently lose their train of thought or often become sidetracked may in fact be displaying early symptoms of cerebral small vessel disease.

"Silent" strokes are so-called because they don’t have obvious effects as seen with an overt stroke. Typically, they’re not diagnosed until the damage has accumulated to such an extent that effects are seen, or by chance through MRI scans.

https://www.eurekalert.org/pub_releases/2019-02/bcfg-apt020419.php

Reference: 

Dey, A. K., Stamenova, V., Bacopulos, A., Jeyakumar, N., Turner, G. R., Black, S. E., & Levine, B. (2019). Cognitive heterogeneity among community-dwelling older adults with cerebral small vessel disease. Neurobiology of Aging, 77, 183–193. https://doi.org/10.1016/j.neurobiolaging.2018.12.011

Source: 

Topics: 

tags development: 

tags problems: 

Menstruation doesn't change how your brain works

  • A largish study for its type indicates that hormonal changes during the menstrual cycle have no impact on working memory, multitasking ability, or cognitive bias.

A study involving 88 women, some of whom had endocrinological disorders, has found that, while some hormones were associated with changes across one menstrual cycle in some of the women taking part, these effects didn't repeat in the following cycle. In other words, there was no consistent effect of hormonal changes on cognition. This is not to say that some individuals might not be consistently affected, just that it doesn’t appear to be a general rule.

While the number of participants isn’t huge, it is considerably larger than is common in these sort of studies. The replication across two cycles is particularly important, since if the researchers had settled for just looking at one cycle, they would have concluded that there was an effect on cognition — as several studies have previously concluded. This more rigorous study suggests that earlier findings should be regarded with caution.

The study followed the women through two menstrual cycles. For the first cycle, 88 women participated; 68 women were re-assessed for a second cycle, to rule out practice effects and false-positive chance findings. Visuospatial working memory, attention, cognitive bias and hormone levels were assessed at four consecutive time-points across both cycles.

Of the initial 88, 58 had no endocrinological problems, 13 were diagnosed with endometriosis, 16 with polycystic ovary syndrome (PCOS) and one woman with hyperprolactinemia. Additionally, 12 women presented with obesity. Women were excluded if they were using oral contraceptives, had been pregnant or breastfeeding within the past 6 months, were using medication or had surgery which might interfere with endocrine parameters, had severe psychiatric or general diseases, worked irregular shifts, had menstrual or ovulation disorders except those investigated in the study, or showed any additional abnormality in hormonal parameters. Mean age was 30. Data from the subset of healthy women were also analyzed separately, confirming no difference in the findings. I would have liked the researchers to mention how the 68 women in the replication were selected, but I assume, after all their emphasis on methodological rigor, that they would have been careful to make sure there was no bias in that selection.

It should be noted, however, that the cognitive testing wasn’t exhaustive by any means — it’s possible that other cognitive aspects might be affected by hormonal changes. However, attention and working memory are the areas generally accused, and most likely to be noticed by an individual.

Of course, that’s the thing about attention and working memory — they’re very sensitive to a host of factors, including sleep quality and stress. So, we often notice that we’re not working at top gear, and we’re likely to look around for reasons. If we’re women, and it’s our period or just before it, we’re quite likely to attribute the reason to that. And it may be true in an indirect way — if we have pain, or sleeplessness, or are stressed, for example. What this study tells us, is that the changes in hormonal levels don't seem to consistently affect cognition.

https://www.eurekalert.org/pub_releases/2017-07/f-mdc062717.php

Reference: 

Source: 

Topics: 

tags memworks: 

tags problems: 

Why we mix up names of people we know well

  • A large survey sheds light on why we have slips of the tongue when we call very familiar people by the wrong name.

We've all done it: used the wrong name when we know the right one perfectly well. And we all know when it's most likely to happen. But here's a study come to reassure us that it's okay, this is just how we roll.

The study, based on five separate surveys of more than 1,700 respondents, finds that these naming errors (when you call someone you know very well by the wrong name) follow a particular pattern that tells us something about how our memory is organized.

Usually the wrong name comes from the same relationship category. So I call one son by the name of the other; on a bad day (e.g. when there's a lot going on, perhaps a lot of people around, and I'm thinking of many other things — say, at Christmas), I might run through both sons, my partner, and my father!

Not just family, you can mix up friends' names too. And the bit that's really enlightening: family members might also be called by the name of the family dog! Interestingly, only the dog; cat owners don't make such slips of the tongue. (Yes, dogs are family; cats not so much.)

Unsurprisingly, phonetic similarity between names is also a factor, although it's less important than relational category. Names with the same beginning or ending sounds, or with shared phonemes (e.g., John and Bob), are more likely to be muddled.

But it's not affected by physical similarity between people — not even by gender (which surprised me, but then, in my household I'm the only female).

More importantly, it's not a function of age. Misnaming errors are common across the board.

http://www.futurity.org/moms-families-dogs-names-1152392/

Reference: 

Source: 

Topics: 

tags memworks: 

tags problems: 

Attention Problems

Older news items (pre-2010) brought over from the old website

Binge drinking affects attention and working memory in young university students

A Spanish study of 95 first-year university students, 42 of them binge drinkers, has found that those who engaged in binge drinking required greater attentional processing during a visual working memory task in order to carry it out correctly. They also had difficulties differentiating between relevant and irrelevant stimuli. Binge drinkers are defined as males who drink five or more standard alcohol drinks, and females who drink four or more, on one occasion and within a two-hour interval. Some 40% of university students in the U.S. are considered binge drinkers.

 [231] Crego, A., Holguín S R., Parada M., Mota N., Corral M., & Cadaveira F.
(2009).  Binge drinking affects attentional and visual working memory processing in young university students.
Alcoholism, Clinical and Experimental Research. 33(11), 1870 - 1879.

http://www.eurekalert.org/pub_releases/2009-08/ace-bda080509.php

Short stressful events may improve working memory

We know that chronic stress has a detrimental effect on learning and memory, but a new rat study shows how acute stress (a short, sharp event) can produce a beneficial effect. The rats, trained to a level of 60-70% accuracy on a maze, were put through a 20-minute forced swim before being run through the maze again. Those who experienced this stressful event were better at running the maze 4 hours later, and a day later, than those not forced through the stressful event. It appears that the stress hormone corticosterone (cortisol in humans) increases transmission of the neurotransmitter glutamate in the prefrontal cortex and improves working memory. It also appears that chronic stress suppresses the transmission of glutamate in the prefrontal cortex of male rodents, while estrogen receptors in female rodents make them more resilient to chronic stress than male rats.

[1157] Yuen, E. Y., Liu W., Karatsoreos I. N., Feng J., McEwen B. S., & Yan Z.
(2009).  Acute stress enhances glutamatergic transmission in prefrontal cortex and facilitates working memory.
Proceedings of the National Academy of Sciences of the United States of America. 106(33), 14075 - 14079.

http://www.eurekalert.org/pub_releases/2009-07/uab-sse072309.php

When emotions involved, older adults may perform memory tasks better than young adults

A study involving 72 young adults (20-30 years old) and 72 older adults (60-75) has found that regulating emotions – such as reducing negative emotions or inhibiting unwanted thoughts – is a resource-demanding process that disrupts the ability of young adults to simultaneously or subsequently perform tasks, but doesn’t affect older adults. In the study, most of the participants watched a two-minute video designed to induce disgust, while the rest watched a neutral two-minute clip. Participants then played a computer memory game. Before playing 2 further memory games, those who had watched the disgusting video were instructed either to change their negative reaction into positive feelings as quickly as possible or to maintain the intensity of their negative reaction, or given no instructions. Those young adults who had been told to turn their disgust into positive feelings, performed significantly worse on the subsequent memory tasks, but older adults were not affected. The feelings of disgust in themselves did not affect performance in either group. It’s speculated that older adults’ greater experience allows them to regulate their emotions without cognitive effort.

[200] Scheibe, S., & Blanchard-Fields F.
(2009).  Effects of regulating emotions on cognitive performance: what is costly for young adults is not so costly for older adults.
Psychology and Aging. 24(1), 217 - 223.

http://www.eurekalert.org/pub_releases/2009-03/giot-oac030409.php

Inconsistent processing speed among children with ADHD

A new analytical technique has revealed that the problem with children with ADHD is not so much that they are slower at responding to tasks, but rather that their response is inconsistent. The study of 25 children with ADHD and 24 typically developing peers found that on a task in which a number on one screen needed to be mentally added to another number shown on a second screen, those with ADHD were much less consistent in their response times, although the responses they did give were just as accurate. Higher levels of hyperactivity and restlessness or impulsivity (as measured by parent survey) correlated with more slower reaction times. The finding supports the idea that what underlies impaired working memory is a problem in how consistently a child with ADHD can respond during a working memory task.

[911] Buzy, W. M., Medoff D. R., & Schweitzer J. B.
(2009).  Intra-Individual Variability Among Children with ADHD - on a Working Memory Task: An Ex-Gaussian Approach.
Child Neuropsychology. 15(5), 441 - 441.

http://www.eurekalert.org/pub_releases/2009-03/uoc--ips032409.php

Hyperactivity enables children with ADHD to stay alert

A study of 12 8- to 12-year-old boys with ADHD, and 11 of those without, has found that activity levels of those with ADHD increased significantly whenever they had to perform a task that placed demands on their working memory. In a highly stimulating environment where little working memory is required (such as watching a Star Wars video), those with ADHD kept just as still as their normal peers. It’s suggested that movement helps them stay alert enough to complete challenging tasks, and therefore trying to limit their activity (when non-destructive) is counterproductive. Providing written instructions, simplifying multi-step directions, and using poster checklists are all strategies that can be used to help children with ADHD learn without overwhelming their working memories.

[734] Rapport, M., Bolden J., Kofler M., Sarver D., Raiker J., & Alderson R.
(2009).  Hyperactivity in Boys with Attention-Deficit/Hyperactivity Disorder (ADHD): A Ubiquitous Core Symptom or Manifestation of Working Memory Deficits?.
Journal of Abnormal Child Psychology. 37(4), 521 - 534.

http://www.eurekalert.org/pub_releases/2009-03/uocf-ush030909.php

Poverty can physically impair brain, reducing children's ability to learn

We know that stress affects learning and memory, and there is considerable evidence confirming the commonsense intuition that low-income families are under a lot of stress. Now a long-term study involving 195 children from rural households above and below the poverty line has found that children who lived in impoverished environments for longer periods of time during childhood showed higher stress scores and suffered greater impairments in working memory at 17. Those who spent their entire childhood in poverty scored about 20% lower on working memory tests at 17 than those who were never poor.

[461] Evans, G. W., & Schamberg M. A.
(2009).  Childhood poverty, chronic stress, and adult working memory.
Proceedings of the National Academy of Sciences. 106(16), 6545 - 6549.

Full text available at http://www.pnas.org/content/early/2009/03/27/0811910106.abstract?sid=b4c74b57-a4a5-447b-8675-ba75e69f3ec2
http://www.physorg.com/news158594009.html
http://www.washingtonpost.com/wp-dyn/content/article/2009/04/05/AR2009040501719.html

New research shows why too much memory may be a bad thing

People who are able to easily and accurately recall historical dates or long-ago events may have a harder time with word recall or remembering the day's current events. A mouse study reveals why. Neurogenesis has been thought of as a wholly good thing — having more neurons is surely a good thing — but now a mouse study has found that stopping neurogenesis in the hippocampus improved working memory. Working memory is highly sensitive to interference from information previously stored in memory, so it may be that having too much information may hinder performing everyday working memory tasks.

[635] Saxe, M. D., Malleret G., Vronskaya S., Mendez I., Garcia D. A., Sofroniew M. V., et al.
(2007).  Paradoxical influence of hippocampal neurogenesis on working memory.
Proceedings of the National Academy of Sciences. 104(11), 4642 - 4646.

Full text is available at http://www.pnas.org/cgi/reprint/104/11/4642
http://www.physorg.com/news94384934.html
http://www.sciencedaily.com/releases/2007/03/070329092022.htm
http://www.eurekalert.org/pub_releases/2007-03/cumc-nrs032807.php

Implicit stereotypes and gender identification may affect female math performance

Another study has come out showing that women enrolled in an introductory calculus course who possessed strong implicit gender stereotypes, (for example, automatically associating "male" more than "female" with math ability and math professions) and were likely to identify themselves as feminine, performed worse relative to their female counterparts who did not possess such stereotypes and who were less likely to identify with traditionally female characteristics. Strikingly, a majority of the women participating in the study explicitly expressed disagreement with the idea that men have superior math ability, suggesting that even when consciously disavowing stereotypes, female math students are still susceptible to negative perceptions of their ability.

[969] Kiefer, A. K., & Sekaquaptewa D.
(2007).  Implicit stereotypes, gender identification, and math-related outcomes: a prospective study of female college students.
Psychological Science: A Journal of the American Psychological Society / APS. 18(1), 13 - 18.

http://www.eurekalert.org/pub_releases/2007-01/afps-isa012407.php

Reducing the racial achievement gap

And staying with the same theme, a study that came out six months ago, and recently reviewed on the excellent new Scientific American Mind Matters blog, revealed that a single, 15-minute intervention erased almost half the racial achievement gap between African American and white students. The intervention involved writing a brief paragraph about which value, from a list of values, was most important to them and why. The intervention improved subsequent academic performance for some 70% of the African American students, but none of the Caucasians. The study was repeated the following year with the same results. It is thought that the effect of the intervention was to protect against the negative stereotypes regarding the intelligence and academic capabilities of African Americans.

[1082] Cohen, G. L., Garcia J., Apfel N., & Master A.
(2006).  Reducing the Racial Achievement Gap: A Social-Psychological Intervention.
Science. 313(5791), 1307 - 1310.

Highly accomplished people more prone to failure than others when under stress

One important difference between those who do well academically and those who don’t is often working memory capacity. Those with a high working memory capacity find it easier to read and understand and reason, than those with a smaller capacity. However, a new study suggests there is a downside. Such people tend to heavily rely on their abundant supply of working memory and are therefore disadvantaged when challenged to solve difficult problems, such as mathematical ones, under pressure — because the distraction caused by stress consumes their working memory. They then fall back on the less accurate short-cuts that people with less adequate supplies of working memory tend to use, such as guessing and estimation. Such methods are not made any worse by working under pressure. In the study involving 100 undergraduates, performance of students with strong working memory declined to the same level as those with more limited working memory, when the students were put under pressure. Those with more limited working memory performed as well under added pressure as they did without the stress.

The findings were presented February 17 at the annual meeting of the American Association for the Advancement of Science.

http://www.eurekalert.org/pub_releases/2007-02/uoc-hap021607.php

Common gene version optimizes thinking but carries a risk

On the same subject, another study has found that the most common version of DARPP-32, a gene that shapes and controls a circuit between the striatum and prefrontal cortex, optimizes information filtering by the prefrontal cortex, thus improving working memory capacity and executive control (and thus, intelligence). However, the same version was also more prevalent among people who developed schizophrenia, suggesting that a beneficial gene variant may translate into a disadvantage if the prefrontal cortex is impaired. In other words, one of the things that make humans more intelligent as a species may also make us more vulnerable to schizophrenia.

[864] Kolachana, B., Kleinman J. E., Weinberger D. R., Meyer-Lindenberg A., Straub R. E., Lipska B. K., et al.
(2007).  Genetic evidence implicating DARPP-32 in human frontostriatal structure, function, and cognition.
Journal of Clinical Investigation. 117(3), 672 - 682.

http://www.sciencedaily.com/releases/2007/02/070208230059.htm
http://www.eurekalert.org/pub_releases/2007-02/niom-cgv020707.php

Anxiety adversely affects those who are most likely to succeed at exams

It has been thought that pressure harms performance on cognitive skills such as mathematical problem-solving by reducing the working memory capacity available for skill execution. However, a new study of 93 students has found that this applies only to those high in working memory. It appears that the advantage of a high working memory capacity disappears when that attention capacity is compromised by anxiety.

[355] Beilock, S. L., & Carr T. H.
(2005).  When high-powered people fail: working memory and "choking under pressure" in math.
Psychological Science: A Journal of the American Psychological Society / APS. 16(2), 101 - 105.

http://www.eurekalert.org/pub_releases/2005-02/bpl-wup020705.php

Memory-enhancing drugs for elderly may impair working memory and other executive functions

Drugs that increase the activity of an enzyme called protein kinase A improve long-term memory in aged mice and have been proposed as memory-enhancing drugs for elderly humans. However, the type of memory improved by this activity occurs principally in the hippocampus. A new study suggests that increased activity of this enzyme has a deleterious effect on working memory (which principally involves the prefrontal cortex). In other words, a drug that helps you remember a recent event may worsen your ability to remember what you’re about to do (to take an example).

[1404] Ramos, B. P., Birnbaum S. G., Lindenmayer I., Newton S. S., Duman R. S., & Arnsten A. F. T.
(2003).  Dysregulation of protein kinase a signaling in the aged prefrontal cortex: new strategy for treating age-related cognitive decline.
Neuron. 40(4), 835 - 845.

http://www.eurekalert.org/pub_releases/2003-11/naos-mdf110303.php

Sleep deprivation affects working memory

A recent study investigated the working memory capacities of individuals who were sleep-deprived. For nine days, 7 of the 12 participants slept four hours each night, and 5 slept for eight hours. Each morning, participants completed a computer task to measure how quickly they could access a list of numbers they had been asked to memorize. The list could be one, three, or five items long. Then participants were presented with a series of single digits and asked to answer "yes" or "no" to indicate whether each digit was one they had memorized. Those who slept eight hours a night steadily increased their working memory efficiency on this task, but those who slept only four hours a night failed to show any improvement in memory efficiency. Motor skill did not change across days for either group of participants.

The findings were presented at the Society for Neuroscience 2003 annual  conference.

http://www.eurekalert.org/pub_releases/2003-11/sfn-sfb_1111003.php

Cognitive impairment following bypass surgery may last longer than thought

More support for a link between cardiopulmonary bypass surgery and cognitive impairment comes from a new study. In particular, it seems, that attention may be most affected. The study also found evidence of longer-lasting cognitive decline than previously thought. Bypass patients also demonstrated poorer cognitive performance before the surgery, and it is now being suggested that it may be the disease itself that is the major problem, rather than the surgery itself. This is consistent with recent research connecting cardiovascular risk factors with risk factors for cognitive decline.

[716] Keith, J. R., Puente A. E., Malcolmson K. L., Tartt S., Coleman A. E., & Marks H. F.
(2002).  Assessing postoperative cognitive change after cardiopulmonary bypass surgery.
Neuropsychology. 16(3), 411 - 421.

http://www.eurekalert.org/pub_releases/2002-07/apa-lci070802.php

Cocaine may permanently damage learning abilities in developing fetuses

Two recent studies investigating the effect of pre-natal exposure to cocaine in rats suggest that children exposed to cocaine while in the womb may have permanent changes to the part of the brain that helps control attention and memory, leading to learning deficits and symptoms that are very much like attention deficit hyperactivity disorder.

[1270] Morrow, B. A., Elsworth J. D., & Roth R. H.
(2002).  Male rats exposed to cocaine in utero demonstrate elevated expression of Fos in the prefrontal cortex in response to environment.
Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology. 26(3), 275 - 285.

[264] Morrow, B. A., Elsworth J. D., & Roth R. H.
(2002).  Prenatal cocaine exposure disrupts non-spatial, short-term memory in adolescent and adult male rats.
Behavioural Brain Research. 129(1-2), 217 - 223.

http://www.eurekalert.org/pub_releases/2002-02/yu-ucd021802.php

tags problems: 

Forgetfulness in old age may be related to changes in retrieval strategy

April, 2013

A study of younger and older adults indicates that memory search tends to decline with age because, with reduced cognitive control, seniors’ minds tend to ‘flit’ too quickly from one information cluster to another.

Evidence is accumulating that age-related cognitive decline is rooted in three related factors: processing speed slows down (because of myelin degradation); the ability to inhibit distractions becomes impaired; working memory capacity is reduced.

A new study adds to this evidence by looking at one particular aspect of age-related cognitive decline: memory search.

The study put 185 adults aged 29-99 (average age 67) through three cognitive tests: a vocabulary test, digit span (a working memory test), and the animal fluency test, in which you name as many animals as you can in one minute.

Typically, in the animal fluency test, people move through semantic categories such as ‘pets’, ‘big cats’, and so on. The best performers are those who move from category to category with optimal timing — i.e., at the point where the category has been sufficiently exhausted that efforts would be better spent on a new one.

Participants recalled on average 17 animal names, with a range from 5 to 33. While there was a decline with age, it wasn’t particularly marked until the 80s (an average of 18.3 for those in their 30s, 17.5 for those in their 60s, 16.5 for the 70s, 12.8 for the 80s, and 10 for the 90s). Digit span did show a decline, but it was not significant (from 17.5 down to 15.3), while vocabulary (consistent with previous research) showed no decline with age.

But all this is by the by — the nub of the experiment was to discover how individuals were searching their memory. This required a quite complicated analysis, which I will not go into, except to mention two important distinctions. The first is between:

  • global context cue: activates each item in the active category according to how strong it is (how frequently it has been recalled in the past);
  • local context cue: activates each item in relation to its semantic similarity to the previous item recalled.

A further distinction was made between static and dynamic processes: in dynamic models, it is assumed the user switches between local and global search. This, it is further assumed, is because memory is ‘patchy’ – that is, information is represented in clusters. Within a cluster, we use local cues, but to move from one cluster to another, we use global cues.

The point of all this was to determine whether age-related decline in memory search has to do with:

  • Reduced processing speed,
  • Persisting too long on categories, or
  • Inability to maintain focus on local cues (this would relate it back to the inhibition deficit).

By modeling the exact recall patterns, the researchers ascertained that the recall process is indeed dynamic, although the points of transition are not clearly understood. The number of transitions from one cluster to another was negatively correlated with age; it was also strongly positively correlated with performance (number of items recalled). Digit span, assumed to measure ‘cognitive control’, was also negatively correlated with number of transitions, but, as I said, was not significantly correlated with age.

In other words, it appears that there is a qualitative change with age, that increasing age is correlated with increased switching, and reduced cognitive control is behind this — although it doesn’t explain it all (perhaps because we’re still not able to fully measure cognitive control).

At a practical level, the message is that memory search may become less efficient because, as people age, they tend to change categories too frequently, before they have exhausted their full potential. While this may well be a consequence of reduced cognitive control, it seems likely (to me at least) that making a deliberate effort to fight the tendency to move on too quickly will pay dividends for older adults who want to improve their memory retrieval abilities.

Nor is this restricted to older adults — since age appears to be primarily affecting performance through its effects on cognitive control, it is likely that this applies to those with reduced working memory capacity, of any age.

Reference: 

[3378] Hills, T. T., Mata R., Wilke A., & Samanez-Larkin G. R.
(2013).  Mechanisms of Age-Related Decline in Memory Search Across the Adult Life Span.
Developmental Psychology. No - Pagination Specified.

Source: 

Topics: 

tags development: 

tags memworks: 

tags problems: 

Interactive robot trains kids with autism

A humanoid robot has been designed, and shows promise, for teaching joint attention to children with ASD. Robots are particularly appealing to children, and even more so to those with ASD.

http://www.futurity.org/health-medicine/interactive-robot-trains-kids-with-autism/

04/2013

Mynd: 

tags development: 

tags problems: 

Frequent multitaskers are the worst at it

March, 2013

A survey of college students found that those who scored highest in multitasking ability were also least likely to multitask, while those who scored lowest were most likely to engage in it.

I’ve reported often on the perils of multitasking. Here is yet another one, with an intriguing new finding: it seems that the people who multitask the most are those least capable of doing so!

The study surveyed 310 undergraduate psychology students to find their actual multitasking ability, perceived multitasking ability, cell phone use while driving, use of a wide array of electronic media, and personality traits such as impulsivity and sensation-seeking.

Those who scored in the top quarter on a test of multitasking ability tended not to multitask. Some 70% of participants thought they were above average at multitasking, and perceived multitasking ability (rather than actual) was associated with multitasking. Those with high levels of impulsivity and sensation-seeking were also more likely to multitask (with the exception of using a cellphone while driving, which wasn’t related to impulsivity, though it was related to sensation seeking).

The findings suggest that those who multitask don’t do so because they are good at multitasking, but because they are poor at focusing on one task.

Reference: 

Source: 

Topics: 

tags: 

tags development: 

tags memworks: 

tags problems: 

Pages

Subscribe to RSS - attention problems
Error | About memory

Error

The website encountered an unexpected error. Please try again later.