Why our brains produce fewer new neurons in old age

August, 2011

New research explains why fewer new brain cells are created in the hippocampus as we get older.

It wasn’t so long ago we believed that only young brains could make neurons, that once a brain was fully matured all it could do was increase its connections. Then we found out adult brains could make new neurons too (but only in a couple of regions, albeit critical ones). Now we know that neurogenesis in the hippocampus is vital for some operations, and that the production of new neurons declines with age (leading to the idea that the reduction in neurogenesis may be one reason for age-related cognitive decline).

What we didn’t know is why this happens. A new study, using mice genetically engineered so that different classes of brain cells light up in different colors, has now revealed the life cycle of stem cells in the brain.

Adult stem cells differentiate into progenitor cells that ultimately give rise to mature neurons. It had been thought that the stem cell population remained stable, but that these stem cells gradually lose their ability to produce neurons. However, the mouse study reveals that during the mouse's life span, the number of brain stem cells decreased 100-fold. Although the rate of this decrease actually slows with age, and the output per cell (the number of progenitor cells each stem cell produces) increases, nevertheless the pool of stem cells is dramatically reduced over time.

The reason this happens (and why it wasn’t what we expected) is explained in a computational model developed from the data. It seems that stem cells in the brain differ from other stem cells. Adult stem cells in the brain wait patiently for a long time until they are activated. They then undergo a series of rapid divisions that give rise to progeny that differentiate into neurons, before ‘retiring’ to become astrocytes. What this means is that, unlike blood or gut stem cells (that renew themselves many times), brain stem cells are only used once.

This raises a somewhat worrying question: if we encourage neurogenesis (e.g. by exercise or drugs), are we simply using up stem cells prematurely? The researchers suggest the answer depends on how the neurogenesis has been induced. Parkinson's disease and traumatic brain injury, for example, activate stem cells directly, and so may reduce the stem cell population. However, interventions such as exercise stimulate the progenitor cells, not the stem cells themselves.

Reference: 

Related News

It’s been suggested before that Down syndrome and Alzheimer's are connected. Similarly, there has been evidence for connections between diabetes and Alzheimer’s, and cardiovascular disease and Alzheimer’s. Now new evidence shows that all of these share a common disease mechanism.

Part of the Women's Health Initiative study looking at the effect of hormone therapy on thinking and memory in postmenopausal women, involving over 1400 women, has found those who had high blood pressure at the start of the study (eight years earlier) had significantly higher amounts of

A three-year study involving 169 people with mild cognitive impairment has found that those who later developed Alzheimer's disease showed 10-30% greater atrophy in two specific locations within the

A study involving 511 older adults (average age 78) has found that 11.6% of those with very mild or mild Alzheimer’s (43% of the participants) had mental lapses, compared to only 2 of the 295 without Alzheimer’s. Those with mental lapses also tended to have more severe Alzheimer’s.

Loss of memory and problems with judgment in dementia patients can cause difficulties in relation to eating and nutrition; these problems in turn can lead to poor quality of life, pressure ulcers and infections.

A European trial involving 225 patients with mild Alzheimer's has found that those who drank Souvenaid (a cocktail of uridine, choline and the omega-3 fatty acid DHA, plus B vitamins, phosopholipids and antioxidants) for 12 weeks were more likely to improve their performance in a delayed verbal

Subjective cognitive impairment (SCI), marked by situations such as when a person recognizes they can't remember a name like they used to or where they recently placed important objects the way they used to, is experienced by between one-quarter and one-half of the population over the age of 65.

A German study involving nearly 4000 older adults (55+) has found that physical activity significantly reduced the risk of developing mild cognitive impairment over a two-year period.

Rodent studies have demonstrated the existence of specialized neurons involved in spatial memory.

Although HIV doesn't directly infect neurons, it appears that once it has crossed the blood-brain barrier, it affects supporting cells that can release immune factors that harm neurons.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news
Error | About memory

Error

The website encountered an unexpected error. Please try again later.