Why it gets harder to remember as we get older

June, 2011

A new study finds that older adults have more difficulty in recognizing new information as ‘new’, and this is linked to degradation of the path leading into the hippocampus.

As we get older, when we suffer memory problems, we often laughingly talk about our brain being ‘full up’, with no room for more information. A new study suggests that in some sense (but not the direct one!) that’s true.

To make new memories, we need to recognize that they are new memories. That means we need to be able to distinguish between events, or objects, or people. We need to distinguish between them and representations already in our database.

We are all familiar with the experience of wondering if we’ve done something. Is it that we remember ourselves doing it today, or are we remembering a previous occasion? We go looking for the car in the wrong place because the memory of an earlier occasion has taken precedence over today’s event. As we age, we do get much more of this interference from older memories.

In a new study, the brains of 40 college students and older adults (60-80) were scanned while they viewed pictures of everyday objects and classified them as either "indoor" or "outdoor." Some of the pictures were similar but not identical, and others were very different. It was found that while the hippocampus of young students treated all the similar pictures as new, the hippocampus of older adults had more difficulty with this, requiring much more distinctiveness for a picture to be classified as new.

Later, the participants were presented with completely new pictures to classify, and then, only a few minutes later, shown another set of pictures and asked whether each item was "old," "new" or "similar." Older adults tended to have fewer 'similar' responses and more 'old' responses instead, indicating that they could not distinguish between similar items.

The inability to recognize information as "similar" to something seen recently is associated with “representational rigidity” in two areas of the hippocampus: the dentate gyrus and CA3 region. The brain scans from this study confirm this, and find that this rigidity is associated with changes in the dendrites of neurons in the dentate/CA3 areas, and impaired integrity of the perforant pathway — the main input path into the hippocampus, from the entorhinal cortex. The more degraded the pathway, the less likely the hippocampus is to store similar memories as distinct from old memories.

Apart from helping us understand the mechanisms of age-related cognitive decline, the findings also have implications for the treatment of Alzheimer’s. The hippocampus is one of the first brain regions to be affected by the disease. The researchers plan to conduct clinical trials in early Alzheimer's disease patients to investigate the effect of a drug on hippocampal function and pathway integrity.

Reference: 

Related News

The first detailed characterization of the molecular structures of amyloid-beta fibrils that develop in the brains of those with Alzheimer's disease suggests that different molecular structures of amyloid-beta fibrils may distinguish the brains of Alzheimer's patients with different clinical his

A study involving mice lacking a master clock gene called Bmal1 has found that as the mice aged, their brains showed patterns of damage similar to those seen in Alzheimer's disease and other neurodegenerative disorders. Many of the injuries seemed to be caused by free radicals.

A new study involving 96 older adults initially free of dementia at the time of enrollment, of whom 12 subsequently developed mild Alzheimer’s, has clarified three fundamental issues about Alzheimer's: where it starts, why it starts there, and how it spreads.

Analysis of 5715 cases from the National Alzheimer's Coordinating Center (NACC) database has found that nearly 80% of more than 4600 Alzheimer's disease patients showed some degree of vascular pathology, compared with 67% of the controls, and 66% in the Parkinson's group.

The jugular venous reflux (JVR) occurs when the pressure gradient reverses the direction of blood flow in the veins, causing blood to leak backwards into the brain.

The

Following on from the evidence that Alzheimer’s brains show higher levels of metals such as iron, copper, and zinc, a mouse study has found that amyloid plaques in Alzheimer’s-like brains with significant neurodegeneration have about 25% more copper than those with little neurodegeneration.

An Italian study has found that a significant percentage of Alzheimer’s patients suffer from Obstructive Sleep Apnea Syndrome. This respiratory disorder, which causes people to temporarily stop breathing during their sleep, affects cerebral blood flow, promoting cognitive decline.

Data from 70 older adults (average age 76) in the Baltimore Longitudinal Study of Aging has found that those who reported poorer sleep (shorter sleep duration and lower sleep quality) showed a greater buildup of amyloid-beta plaques.

A new discovery helps explain why the “Alzheimer’s gene” ApoE4 is such a risk factor.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news