Why exercise helps memory and learning

May, 2012

A mouse study suggests exercise increases neurogenesis through muscles’ release of an enzyme that affects energy and metabolism — an enzyme whose production lessens with age.

A number of studies, principally involving rodents, have established that physical exercise stimulates the creation of new brain cells in the hippocampus. A recent study attempted to uncover more about the mechanism.

Using two drugs that work directly on muscles, producing the physical effects of exercise, the researchers compared the effects on the brain. One drug (Aicar) improves the fitness of even sedentary animals. The other drug increases the effects of exercise on animals that exercise, but has little effect on sedentary animals.

After a week of receiving one of the drugs, sedentary mice performed better on tests of memory and learning, and showed more new brain cells. These effects were significantly greater for those taking Aicar.

Because the drugs have very little ability to cross into the brain, this demonstrates that the neurogenesis results from exercise-type reactions in the muscles, not to brain responses to the drugs. Indeed, previous research has found that direct infusion of Aicar into the brain impaired learning and memory.

Aicar increases the muscles’ output of AMPK, an enzyme that affects cellular energy and metabolism. It’s speculated that some of this enzyme may enter the bloodstream and travel to the brain. Interestingly, as with neurogenesis, AMPK activity in muscles appears to decline with age. It may be that AMPK production could serve as a biomarker for neurogenesis, as well as being a target for improving neurogenesis.

These findings add weight to evidence for the value of aerobic exercise over other types of exercise (given that the mice exercise by running). However, I see that human research has found that resistance training (which is difficult to study in mice!) also increases AMPK activity.

Do note — if you are hopeful that drugs will relieve you of the need to exercise — that the benefits were not only smaller than those achieved from exercise, but also didn’t last. In those mice taking Aicar for a second week, their brains not only stopped deriving any benefit, but actually deteriorated.

Reference: 

Related News

A large longitudinal study, comparing physical activity at teenage, age 30, age 50, and late life against cognition of 9,344 women, has revealed that women who are physically active at any point have a lower risk of cognitive impairment in late-life compared to those who are inactive, but teenage

A study involving 733 participants from the Framingham Heart Study Offspring Cohort (average age 60) provides more evidence that excess abdominal fat places otherwise healthy, middle-aged people at greater risk for dementia later in life.

A 12-year study involving 1,221 married couples ages 65 or older (part of the Cache County (Utah) Memory Study) has revealed that husbands or wives who care for spouses with dementia are six times more likely to develop Alzheimer’s themselves than those whose spouses don't have it.

A comprehensive study reveals how the ‘Alzheimer's gene’ (APOE ε4) affects the nature of the disease. It is not simply that those with the gene variant tend to be more impaired (in terms of both memory loss and brain damage) than those without.

A special supplement in the Journal of Alzheimer's Disease focuses on the effects of caffeine on dementia and age-related cognitive decline. Here are the highlights:

Studies on the roundworm C. elegans have revealed that the molecules required for learning and memory are the same from C.

Although research has so far been confined to mouse studies, researchers are optimistic about the promise of histone deacetylase inhibitors in reversing age-related memory loss — both normal decline, and the far more dramatic loss produced by Alzheimer’s.

An implantable cardioverter defibrillator (ICD) is a small electronic device that monitors and regulates heartbeat, and many have been implanted in patients — an estimated 114,000 in the U.S. in 2006.

A 12-year study following the drinking and smoking habits of 22,524 people aged 39-79 has found that in non-smokers, people who consumed moderate amounts of alcohol were 37% less likely to develop stroke than non-drinkers. This association was not found among smokers.

An imaging study reveals why older adults are better at remembering positive events.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news
Error | About memory

Error

The website encountered an unexpected error. Please try again later.