Language helps people solve spatial problems

July, 2010

Signers reveal that more complex language helps you find a hidden object, providing more support for the theory that language shapes how we think and perceive.

Because Nicaraguan Sign Language is only about 35 years old, and still evolving rapidly, the language used by the younger generation is more complex than that used by the older generation. This enables researchers to compare the effects of language ability on other abilities. A recent study found that younger signers (in their 20s) performed better than older signers (in their 30s) on two spatial cognition tasks that involved finding a hidden object. The findings provide more support for the theory that language shapes how we think and perceive.

Reference: 

[1629] Pyers, J. E., Shusterman A., Senghas A., Spelke E. S., & Emmorey K.
(2010).  Evidence from an emerging sign language reveals that language supports spatial cognition.
Proceedings of the National Academy of Sciences. 107(27), 12116 - 12120.

Related News

A small study has tested the eminent Donald Hebb’s hypothesis that visual imagery results from the reactivation of neural activity associated with viewing images, and that the re-enactment of eye-movement patterns helps both imagery and

I've reported before on the idea that the drop in

A new study has found that errors in perceptual decisions occurred only when there was confused sensory input, not because of any ‘noise’ or randomness in the cognitive processing.

More evidence that even an 8-week meditation training program can have measurable effects on the brain comes from an imaging study. Moreover, the type of meditation makes a difference to how the brain changes.

We know that emotion affects memory.

A standard test of how we perceive local vs global features of visual objects uses Navon figures — large letters made up of smaller ones (see below for an example).

Previous research has found practice improves your ability at distinguishing visual images that vary along one dimension, and that this learning is specific to the visual images you train on and quite durable.

Memory begins with perception. We can’t remember what we don’t perceive, and our memory of things is influenced by how we perceive them.

As I’ve discussed on many occasions, a critical part of attention (and

Most memory research has concerned itself with learning over time, but many memories, of course, become fixed in our mind after only one experience. The mechanism by which we acquire knowledge from single events is not well understood, but a new study sheds some light on it.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news