The durability and specificity of perceptual learning

September, 2011

Increasing evidence shows that perception is nowhere near the simple bottom-up process we once thought. Two recent perception studies add to the evidence.

Previous research has found practice improves your ability at distinguishing visual images that vary along one dimension, and that this learning is specific to the visual images you train on and quite durable. A new study extends the finding to more natural stimuli that vary on multiple dimensions.

In the small study, 9 participants learned to identify faces and 6 participants learned to identify “textures” (noise patterns) over the course of two hour-long sessions of 840 trials (consecutive days). Faces were cropped to show only internal features and only shown briefly, so this was not a particularly easy task. Participants were then tested over a year later (range: 10-18 months; average 13 and 15 months, respectively).

On the test, participants were shown both images from training and new images that closely resembled them. While accuracy rates were high for the original images, they plummeted for the very similar new images, indicating that despite the length of time since they had seen the original images, they still retained much of the memory of them.

Although practice improved performance across nearly all items and for all people, there were significant differences between both participants and individual stimuli. More interestingly, individual differences (in both stimuli and people) were stable across sessions (e.g., if you were third-best on day 1, you were probably third-best on day 2 too, even though you were doing better). In other words, learning didn’t produce any qualitative changes in the representations of different items — practice had nearly the same effect on all; differences were rooted in initial difficulty of discriminating the pattern.

However, while it’s true that individual differences were stable, that doesn’t mean that every person improved their performance the exact same amount with the same amount of practice. Interestingly (and this is just from my eye-ball examination of the graphs), it looks like there was more individual variation among the group looking at noise patterns. This isn’t surprising. We all have a lot of experience discriminating faces; we’re all experts. This isn’t the case with the textures. For these, people had to ‘catch on’ to the features that were useful in discriminating patterns. You would expect more variability between people in how long it takes to work out a strategy, and how good that strategy is. Interestingly, three of the six people in the texture group actually performed better on the test than they had done on the second day of training, over a year ago. For the other three, and all nine of those in the face group, test performance was worse than it had been on the second day of training (but decidedly better than the first day).

The durability and specificity of this perceptual learning, the researchers point out, resembles that found in implicit memory and some types of sensory adaptation. It also indicates that such perceptual learning is not limited, as has been thought, to changes early in the visual pathway, but produces changes in a wider network of cortical neurons, particularly in the inferior temporal cortex.

The second, unrelated, study also bears on this issue of specificity.

We look at a scene and extract the general features — a crowd of people, violently riotous or riotously happy? — or we look at a scene and extract specific features that over time we use to build patterns about what goes with what. The first is called “statistical summary perception”; the second “statistical learning”.

A study designed to disentangle these two processes found that you can only do one or other; you can’t derive both types of information at the same time. Thus, when people were shown grids of lines slanted to varying degrees, they could either assess whether the lines were generally leaning to the left or right, or they could learn to recognize pairs of lines that had been hidden repeatedly in the grids — but they couldn’t do both.

The fact that each of these tasks interfered with the other suggests that the two processes are fundamentally related.

Reference: 

Related News

A small study has tested the eminent Donald Hebb’s hypothesis that visual imagery results from the reactivation of neural activity associated with viewing images, and that the re-enactment of eye-movement patterns helps both imagery and

I've reported before on the idea that the drop in

A new study has found that errors in perceptual decisions occurred only when there was confused sensory input, not because of any ‘noise’ or randomness in the cognitive processing.

More evidence that even an 8-week meditation training program can have measurable effects on the brain comes from an imaging study. Moreover, the type of meditation makes a difference to how the brain changes.

We know that emotion affects memory.

A standard test of how we perceive local vs global features of visual objects uses Navon figures — large letters made up of smaller ones (see below for an example).

Memory begins with perception. We can’t remember what we don’t perceive, and our memory of things is influenced by how we perceive them.

As I’ve discussed on many occasions, a critical part of attention (and

Most memory research has concerned itself with learning over time, but many memories, of course, become fixed in our mind after only one experience. The mechanism by which we acquire knowledge from single events is not well understood, but a new study sheds some light on it.

If our brains are full of clusters of neurons resolutely only responding to specific features (as suggested in my earlier report), how do we bring it all together, and how do we switch from one point of interest to another?

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news