Cognitive & motor training combined may slow progress of dementia

  • A very small study found that just 30 minutes of visually-guided movements per week could slow and even reverse the progress of dementia in those in the early stages of dementia.

Various forms of dementia, including Alzheimer's, involve brain network problems. Brain regions are not coordinating as well as they should; white matter is dysfunctional, impairing communications. It has even been suggested that problems in the default mode network (the "resting state" of the brain) may be the ultimate driver of the pathological characteristics of Alzheimer's, such as amyloid plaques, tau tangles, and brain atrophy. Regardless of the order of events, it does seem that network dysfunction is one of the big problems in dementia.

It's with this in mind that a pilot study has investigated the benefits of a program designed to simultaneously recruit networks involved in cognition and motor action.

37 elderly people were divided into four groups based on their level of cognition: 12 with normal levels of cognitive performance; 8 with below-average cognition; 6 with mild-to-moderate impairment; 11 with severe cognitive impairment. They completed a 16-week cognitive-motor training program that consisted of weekly sessions involving playing a videogame that required goal-directed hand movements on a computer tablet. Specifically, players had to slice moving objects by sliding their finger through it. Each object sliced earned a point, and bonus points were awarded for slicing multiple objects in a single movement. Each session lasted 20-30 minutes.

Cognition was assessed using the Dementia Rating Scale and the Montreal Cognitive Assessment questionnaire. Cognitive-motor functioning was assessed using the Brain Dysfunction Indicator. Tests occurred 2 weeks prior to training and 2 weeks after.

Two groups showed significant improvement in their cognitive scores after training: the sub-average group, and those with mild-to-moderate impairment. While those who were severely impaired showed no improvement, neither did they decline over the period.

It’s suggested that the communication between frontal lobe and motor control areas is a crucial factor in the program’s success.

Full text available at