Why it's hard to stay on task


Why do we find it so hard to stay on task for long? A recent study uses a new technique to show how the task control network and the default mode network interact (and fight each other for control).

The task control network (which includes the dorsal anterior cingulate and bilateral anterior insula) regulates attention to surroundings, controlling your concentration on tasks. The default mode network, on the other hand, becomes active when a person seems to be doing 'nothing', and becomes less active when a task is being performed.

The study shows that we work better and faster the better the default mode network is suppressed by the task control network. However, when the default mode network is not sufficiently suppressed by the task control network, it sends signals to the task control network, interfering with its performance (and we lose focus).

Interestingly, in certain conditions, such as autism, depression, and mild cognitive impairment, the default mode network remains unchanged whether the person is performing a task or interacting with the environment. Additionally, deficits in the functioning of the default mode network have been implicated in age-related cognitive decline.

The findings add a new perspective to our ideas about attention. One of the ongoing questions concerns the relative importance of the two main aspects of attention: focus, and resisting distraction. A lot of work in recent years has indicated that a large part of age-related cognitive decline is a growing difficulty in resisting distraction. Similarly, there is some evidence that people with a low working memory capacity are less able to ignore irrelevant information.

This recent finding, then, suggests that these difficulties in ignoring distracting / irrelevant stimuli reflect the failure of the task control network to adequately suppress the activity of the default mode network. This puts the emphasis back on training for focus, and may help explain why meditation practices are effective in improving concentration.


[3384] Wen, X., Liu Y., Yao L., & Ding M.
(2013).  Top-Down Regulation of Default Mode Activity in Spatial Visual Attention.
The Journal of Neuroscience. 33(15), 6444 - 6453.

Related News

Memory begins with perception. We can’t remember what we don’t perceive, and our memory of things is influenced by how we perceive them.

As I’ve discussed on many occasions, a critical part of attention (and

Comparison of young adults (mean age 24.5) and older adults (mean age 69.1) in a visual memory test involving multitasking has pinpointed the greater problems older adults have with multitasking.

A study involving 171 sedentary, overweight 7- to 11-year-old children has found that those who participated in an exercise program improved both executive function and math achievement.

A link between positive mood and creativity is supported by a study in which 87 students were put into different moods (using music and video clips) and then given a category learning task to do (classifying sets of pictures with visually complex patterns).

A study involving 80 college students (34 men and 46 women) between the ages of 18 and 40, has found that those given a caffeinated energy drink reported feeling more stimulated and less tired than those given a decaffeinated soda or no drink.

We know active learning is better than passive learning, but for the first time a study gives us some idea of how that works. Participants in the imaging study were asked to memorize an array of objects and their exact locations in a grid on a computer screen.

If our brains are full of clusters of neurons resolutely only responding to specific features (as suggested in my earlier report), how do we bring it all together, and how do we switch from one point of interest to another?

A study involving young (average age 22) and older adults (average age 77) showed participants pictures of overlapping faces and places (houses and buildings) and asked them to identify the gender of the person.

Following on from earlier studies that found individual neurons were associated with very specific memories (such as a particular person), new research has shown that we can actually regulate the activity of specific neurons, increasing the firing rate of some while decreasing the rate of others


Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news