Children

Children's learning & development

Eating fish linked to better sleep and higher I.Q. for kids

A largish Chinese study, involving 541 9-11-year-olds, has found that those who ate fish at least once a week slept better and had higher IQ scores, on average, than those who ate fish less frequently or not at all.

The study suggests that sleep may be a reason for the association previous research has found between the consumption of fish / omega-3 oils and better cognition.

Children who reported eating fish weekly scored 4.8 points higher on the IQ tests than those who said they “seldom” or “never” consumed fish. Those whose meals sometimes included fish scored 3.3 points higher.

Reference: 

Liu, J., Cui, Y., Li, L., Wu, L., Hanlon, A., Pinto-Martin, J., Raine, A., & Hibbeln, J. R. (2017). The mediating role of sleep in the fish consumption – cognitive functioning relationship: A cohort study. Scientific Reports, 7(1), 17961. https://doi.org/10.1038/s41598-017-17520-w

Source: 

Topics: 

tags development: 

tags lifestyle: 

No advantage for bilingual children in executive function

  • A new study adds to recent research challenging the idea that bilingualism benefits children's executive function.

The idea that bilingual children have superior executive function compared to monolingual children has been challenged in recent research. Executive function controls your attention, and helps with such tasks as remembering instructions, controlling responses, and shifting swiftly between tasks. It is positively correlated with children's academic achievement.

However, executive function is a complex construct, with several different components. It has been suggested that inconsistent research findings as to the advantage of bilingualism may be related to differences in how executive function is measured and conceptualized.

A new German study hopes to have dealt with this issues through its methodology and analysis.

The study compared 242 children (aged 5-15) who spoke both Turkish and German, and 95 children who spoke only German. The children’s executive function was tested using a computerized task called Hearts and Flowers, that required the child to press a different key in response to stimuli on the screen, depending on the condition. The congruent condition matched the key to the location of the heart stimulus; the incongruent condition required the child to press the key on the opposite side to where the flower stimulus appeared; the mixed condition tested the ability of the child to use the correct rule depending on which stimulus appeared.

The study found no significant differences in executive function between the two groups, after taking into account maternal education, child gender, age, and working memory (digit span backwards).

The researchers also took into account children's German and Turkish vocabulary size and exposure to both languages, factors for which previous studies on the topic had been criticized for lacking.

https://www.eurekalert.org/pub_releases/2019-01/uota-dbb011819.php

Paper available at https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0209981

 

Reference: 

Jaekel N, Jaekel J, Willard J, Leyendecker B (2019) No evidence for effects of Turkish immigrant children‘s bilingualism on executive functions. PLoS ONE 14(1): e0209981. https://doi.org/10.1371/journal.pone.0209981

 

Source: 

Topics: 

tags development: 

tags memworks: 

tags strategies: 

Aerobic fitness & motor ability counteracts dangers of obesity for developing children’s brains

  • Brain imaging has revealed that aerobic fitness and motor speed/agility in overweight children, but not strength, is associated with greater gray matter in some brain regions, some of which are also associated with better academic performance.

A Spanish study involving 101 overweight/obese children (aged 8-11) has found that aerobic capacity and motor ability is associated with a greater volume of gray matter in several cortical and subcortical brain regions.

Aerobic capacity was associated with greater gray matter volume in the premotor cortex, supplementary motor cortex, hippocampus, caudate nucleus, inferior temporal gyrus, parahippocampal gyrus, and the calcarine cortex. Three of these regions (premotor cortex, supplementary motor cortex and hippocampus) were also related to better academic performance.

Motor ability (speed and agility) was associated with a greater gray matter volume in two regions essential for language processing and reading: the inferior frontal gyrus and the superior temporal gyrus. Both of these were also associated with better academic performance.

Muscular strength showed no independent association with gray matter volume in any brain region.

The researchers suggest that increases in cardiorespiratory fitness and “speed-agility” may counteract the known harmful effect of obesity on brain structure and academic performance during childhood.

https://www.eurekalert.org/pub_releases/2017-11/uog-tbo112217.php

Reference: 

Source: 

Topics: 

tags development: 

tags lifestyle: 

Air pollution exposure walking to school linked to slower growth of working memory

  • A large study has found higher levels of traffic-related air pollution, still within the EU safe limits, are associated with slower growth in working memory capacity in primary/elementary school children.

A Spanish study investigating the effects of traffic-related air pollution on children walking to school has found higher levels of particulate matter and black carbon were associated with decreased growth in working memory capacity. Working memory capacity grows during childhood (and tends to fall in old age).

The study involved 1,234 children aged 7-10, from 39 schools across the city of Barcelona. The children were tested four times over a year to establish their developmental trajectories in working memory and inattentiveness. Average particulate matter, black carbon, and nitrogen dioxide, were estimated for the children’s walking routes using standard measures.

None of the pollutants were associated with inattentiveness. The effect of NO2 on working memory was inconclusive. However, increased concentrations of particulate matter and black carbon were associated with a reduction in the annual growth of working memory of 4.6% and 3.9%, respectively. Boys were more affected than girls.

The study followed an earlier study showing that exposure to traffic-related pollutants in schools was associated with slower cognitive development. Research has previously shown that 20% of a child's daily dose of black carbon (which is directly related to traffic) is inhaled during urban commutes.

The finding emphasizes that even “short exposures to very high concentrations of pollutants can have a disproportionately high impact on health”, and this may be especially true for children, with their smaller lung capacity and higher breathing rate.

The researchers emphasize that the solution for parents is not to stop children walking to school, since those who commute by car or public transport are also exposed to the pollution. Rather, the aim should be to try and find (or make) less polluted, low-traffic paths to school.

https://www.eurekalert.org/pub_releases/2017-10/bifg-ape100517.php

Reference: 

Source: 

Topics: 

tags development: 

tags lifestyle: 

tags memworks: 

Air pollution during pregnancy linked to cognitive impairment in children

  • A largish study involving school-age children not at any particular risk has found that higher levels of air pollution experienced by the mother during pregnancy are linked to less gray matter in some brain regions.

Research using data from a population-based birth cohort from Rotterdam, in The Netherlands, has found that children exposed to higher levels of air pollution when they were in womb had significantly thinner cortex in several brain regions. Some of this appeared to be related to impaired inhibitory control.

The study involved 783 children aged 6 to 10, who were given brain imaging and cognitive tests. Levels of air pollution in the mother’s environment during pregnancy were estimated using a standardized procedure. Mean fine particle levels were 20.2 μg/m3, and nitrogen dioxide levels were 39.3μg/m3. Note that the EU limit for mean fine particles is actually above that (25μg/m3), while the NO2 level is at the EU limit (40μg/m3), with 45% of the Dutch population experiencing higher levels. The World Health Organization sets a much lower level for fine particles: 10 μg/m3.

Children whose mothers were smokers were excluded from the study, as were children from areas where pollution measures weren’t available. Children included tended to be from a higher socio-economic position compared to those not included. Moreover, children with ADHD, or developmental or behavioral problems, were also excluded.

Global brain volume was not affected by fetal exposure. However, several brain regions showed significantly thinner cortex — in particular, the precuneus and rostral middle frontal regions, which partially accounted for the observed association between fetal exposure to fine particles and impaired inhibitory control (the ability to control your own behavior, especially impulsive behavior). This sort of cognitive impairment at early ages could have significant long-term consequences in academic achievement, later career success, and even in risk of mental disorders.

The findings are consistent with other studies linking acceptable air pollution levels with problems including cognitive impairment and child development.

https://www.eurekalert.org/pub_releases/2018-03/e-apl030818.php

Reference: 

Topics: 

tags development: 

tags lifestyle: 

tags problems: 

Picture overload hurts preschooler's word learning

  • A study has found that having more than one illustration results in poorer word learning among pre-schoolers — but this can be mitigated if the reader draws the pre-schooler’s attention to each illustration.

When you're reading a picture book to a very young child, it's easy to think it's obvious what picture, or part of a picture, is being talked about. But you know what all the words mean. It's not so easy when some of the words are new to you, and the open pages have more than one picture. A recent study has looked at the effect on word learning of having one vs two illustrations on a 2-page open spread.

The study, in two experiments, involved the child being read to from a 10-page storybook, which included two novel objects, mentioned four times, but only incidentally. In the first experiment, 36 preschoolers (average age 3.5 years) were randomly assigned to one of three conditions:

  • one illustration (the illustration filled the page, with the text written as part of the illustration, and the opposing page blank)
  • two illustrations (each illustration filled its page, on opposing pages)
  • one large illustration (the page was twice the size of that found in the other conditions) — this was the control condition.

Children who were read stories with only one illustration at a time learned twice as many words as children who were read stories with two or more illustrations. There was no difference in reading time, or in the child’s enjoyment of the story.

In a follow-up experiment, 12 preschoolers were shown the two-illustration books only, but this time the reader used a simple hand swipe gesture to indicate the correct illustration before the page was read to them. With this help, the children learned best of all.

In fact, the rate of word learning in this last condition was comparable to that observed in other studies using techniques such as pointing or asking questions. Asking questions is decidedly better than simply reading without comment, and yet this simple gesture was enough to match that level of learning.

Other studies have shown that various distractions added to picture books, like flaps to lift, reduce learning. All this is best understood in terms of cognitive load. The most interesting thing about this study is that it took so little to ameliorate the extra load imposed by the two illustrations.

https://www.eurekalert.org/pub_releases/2017-06/uos-poh063017.php

https://www.eurekalert.org/pub_releases/2017-07/w-tno071217.php

Also see https://blogs.sussex.ac.uk/psychology/2016/10/24/how-storybook-illustrat... for a blog post by one of the researchers

Reference: 

Source: 

Topics: 

tags development: 

tags memworks: 

tags strategies: 

tags study: 

Is it really better to read print books to your toddler?

  • A comparison of non-interactive electronic books and their print counterparts has found that toddlers learned more from the electronic books, but this was accounted for by their greater attention and engagement.

A new issue for parents to stress over is the question of whether reading digital books with your toddler or preschooler is worse than reading traditional print books. Help on this complicated question comes from a new study involving 102 toddlers aged 17 to 26 months, whose parents were randomly assigned to read two commercially available electronic books or two print books with identical content with their toddler (this was achieved by printing out screenshots of the electronic books).

The books included familiar farm animals (duck, horse, sheep, cow) and also wild animals (koala, crocodile, zebra, and lion), some of which were new to the children). After reading, the children were asked to identify three of the familiar animals and three of the unfamiliar.

The electronic books included background music, animation and sound effects for each page as well as an automatic voiceover that read the text aloud to the child, but there were no actions or hotspots for extra features.

Compared to those who read the print versions, toddlers who read the electronic books:

  • paid more attention
  • made themselves more available for story time
  • participated more
  • commented more about the content.

While parents tended to point at the print book more often, there was no difference between the books in the amount they talked with their children about the story. However, parent–child pairs spent almost twice as much time reading the electronic books than the print books.

Overall, children did significantly better on the learning task when they had read the electronic book. However, analysis showed that the benefit was accounted for by two variables:

  • attention
  • availability for reading.

The researchers note, however, that this may not be true of all electronic books. Previous research has suggested that highly interactive electronic books may distract from learning.

Additionally, the simplicity of electronic books for toddlers may be much better. Books for preschoolers, on the other hand, are more narrative, requiring readers to integrate content across pages. In this circumstance, electronic books may be more distracting.

https://www.eurekalert.org/pub_releases/2017-06/f-sto062117.php

Reference: 

Topics: 

tags development: 

tags strategies: 

Being short of sleep may harm brain development

  • Brain scans of children with sleep apnea have found extensive reductions in gray matter.
  • Recordings of brain activity show that children's brains respond to sleep deprivation differently than adults’ brains do, and that this is linked to myelination of nerves in a specific area.
  • Sleep assessment from birth to age 7 has found that children getting less than the recommended levels of sleep at age 3 and after, were more likely to have cognitive and behavioral problems at age 7.

Untreated sleep apnea in children shrinks brain & may slow development

Brain scans of children who have moderate or severe obstructive sleep apnea have found significant reductions of gray matter across the brain.

The study compared brain scans from 16 children (aged 7-11) with obstructive sleep apnea to those from nine healthy children of the same age, gender, ethnicity and weight, who did not have apnea. The scans were also compared to 191 MRI scans of children who were part of an existing database.

The brains of those children with OSA showed reduced gray matter in multiple brain regions, including the frontal, prefrontal, and parietal cortices, temporal lobe, and the brainstem.

Sleep apnea is known to affect cognition in adults, but it may be that it is even more damaging in brains that are still developing. However, adult studies have also shown that treating sleep apnea reverses gray matter loss and improves cognition. This finding therefore emphasizes the importance of treating children's sleep apnea.

Sleep apnea affects up to 5% of all children (and we can only assume that this will get more common, if childhood obesity continues to rise).

Developing brain regions in children are hardest hit by sleep deprivation

Another study of sleep deprivation in children gives weight to the idea that it is particularly important for proper brain development that children get good sleep.

The study measured the brain activity in 13 healthy five to 12-year-olds as they slept. On the first occasion, the children went to bed at their normal bedtime; the second time, they stayed awake until late and thus received exactly half the normal amount of sleep.

The results indicate that children's brains respond to sleep deprivation differently than adults’ brains do. In adults, being deprived of sleep creates a greater need for deep sleep, which is manifested in greater slow-wave activation in the prefrontal cortex. In the children's brains, this slow-wave increase occurred in the back regions of the brain, in the parietal and occipital lobes. This suggests that these areas might be especially vulnerable to sleep deprivation.

Moreover, this difference was linked to levels of myelin in part of the visual system. Myelin increases as the brain matures. Those with higher levels of myelin in certain nerve fibers in the visual system displayed slow-wave activation that was more similar to that of adults.

The researchers conclude that adequate sleep is important for neuronal connections to develop properly.

Poor sleep in early childhood may lead to cognitive, behavioral problems in later years

A study involving 1,046 children whose sleep was assessed at various points in their first seven years has found that children who didn’t get enough sleep in their preschool and early school years were more likely to have problems with attention, emotional control and peer relationships at age seven.

Sleep was assessed through interviews with the mothers when their children were around 6 months, 3 years and 7 years old, and from questionnaires completed when the children were ages 1, 2, 4, 5 and 6. Mothers and teachers filled out questionnaires evaluating each child's executive function and behavioral issues at around 7.

Children living in homes with lower household incomes and whose mothers had lower education levels were more likely to sleep less than nine hours at ages 5 to 7. Other factors associated with insufficient sleep include more television viewing, a higher body mass index, and being African American.

Insufficient sleep was defined as being less than the recommended amount of sleep at specific age categories:

  • 12 hours or longer at ages 6 months to 2 years
  • 11 hours or longer at ages 3 to 4 years
  • 10 hours or longer at 5 to 7 years.

https://www.eurekalert.org/pub_releases/2017-03/uocm-usa031517.php

https://www.eurekalert.org/pub_releases/2016-10/uoz-dbr100416.php

https://www.eurekalert.org/pub_releases/2016-11/f-hkb112816.php

https://www.eurekalert.org/pub_releases/2017-03/mgh-psi030917.php

Reference: 

Source: 

Topics: 

tags development: 

tags lifestyle: 

Finger tracing helps children doing geometry problems

  • Finger tracing key elements in worked problems seems to help some students better understand and apply mathematical concepts.

I've reported before on studies showing how gesturing can help children with mathematics and problem-solving. A new Australian study involving children aged 9-13 has found that finger-tracing has a similar effect.

Students who used their finger to trace over practice examples while simultaneously reading geometry or arithmetic material were able to complete the problems more quickly and correctly than those who didn't use the same technique.

In the first experiment, involving 52 students aged 11-13, some students were instructed to use their index fingers to trace elements of worked examples in triangle geometry, involving two angle relationships (Vertical angles are equal; Any exterior angle equals the sum of the two interior opposite angles.). Students were given two minutes to study a short instructional text on the relationships and how they can be used to solve particular problems. They were then given two minutes to study two worked examples. The tracing group were given additional instruction in how to use their index finger to trace out highlighted elements. The non-tracing group were told to keep their hands in their lap. Testing consisted of six questions, two of which were the same as the acquisition problems but with different numbers, and four of which were transfer questions, requiring more thoughtful responses.

A ceiling effect meant there was no difference between the two groups on the first two test questions. The tracing group answered significantly more transfer questions, although the difference wasn't great. There was no difference in how difficult the groups rated the test items.

In the second experiment, involving 54 Year 4 students, the instruction and problems concerned the fundamental order of operations. The tracing group were told to trace the operation symbols. The tracing group did significantly better, although again, the difference wasn't great, and again, there was no difference in assessment of problem difficulty.

In another experiment, involving 42 Year 5 students (10-11 years), students were given 5 minutes to study three angle relationships involving parallel lines (vertical angles are equal; corresponding angles are equal; the sum of co- interior angles is 180°). While answers to the 'basic' test questions failed to show significant differences, on the advanced transfer problems, the tracing group solved significantly more test questions than the non-tracing group, solved them more quickly, made fewer errors, and reported lower levels of test difficulty.

In the final experiment, involving 72 Year 5 students, on the advanced test problems, students who traced on the paper outperformed those who traced above the paper, who in turn outperformed those who simply read the material.

The researchers claim the findings support the view that tracing out elements of worked examples helps students construct good mental schemas, making it easier for them to solve new problems, and reducing cognitive demand.

As with gesturing, the benefits of tracing are not dramatic, but I believe the pattern of these results support the view that, when cognitive load is high (something that depends on the individual student as well as the task and its context), tracing key elements of worked examples might be a useful strategy.

Further research looking at individual differences would be helpful. I think greater benefits would be shown for students with low working memory capacity.

http://www.eurekalert.org/pub_releases/2016-01/uos-ftc012816.php

Reference: 

[4046] Hu, F-T., Ginns P., & Bobis J.
(2015).  Getting the point: Tracing worked examples enhances learning.
Learning and Instruction. 35, 85 - 93.

[4043] Ginns, P., Hu F-T., Byrne E., & Bobis J.
(2015).  Learning By Tracing Worked Examples.
Applied Cognitive Psychology. n/a - n/a.

Source: 

Topics: 

tags development: 

tags strategies: 

tags study: 

Childhood concussions impair brain function two years later

  • A small study found children who had experienced a sports-related concussion two years earlier still showed cognitive impairments, with younger children showing greater deficits.

A study involving 30 children (aged 8-10), of whom 15 had experienced a sports-related concussion two years earlier, and all of whom were athletically active, found that those with a history of concussion performed worse on tests of working memory, attention and impulse control, compared to the controls. This impaired performance was also reflected in differences in brain activity. Additionally, those who were injured at a younger age had the largest cognitive deficits.

All of this points to a need for focused and perhaps prolonged interventions, especially for younger children.

http://www.eurekalert.org/pub_releases/2015-12/uoia-scc121815.php

Reference: 

Topics: 

tags development: 

tags problems: 

Pages

Subscribe to RSS - Children
Error | About memory

Error

The website encountered an unexpected error. Please try again later.