seniors

Vascular disease underlies cognitive decline in healthy aging

December, 2010
  • New findings add to evidence that the key to not becoming cognitively impaired in old age is vascular health.

More evidence that vascular disease plays a crucial role in age-related cognitive impairment and Alzheimer’s comes from data from participants in the Alzheimer's Disease Neuroimaging Initiative.

The study involved more than 800 older adults (55-90), including around 200 cognitively normal individuals, around 400 people with mild cognitive impairment, and 200 people with Alzheimer's disease. The first two groups were followed for 3 years, and the Alzheimer’s patients for two. The study found that the extent of white matter hyperintensities (areas of damaged brain tissue typically caused by cardiovascular disease) was an important predictor of cognitive decline.

Participants whose white matter hyperintensities were significantly above average at the beginning of the study lost more points each year in cognitive testing than those whose white matter hyperintensities were average at baseline. Those with mild cognitive impairment or Alzheimer's disease at baseline had additional declines on their cognitive testing each year, meaning that the presence of white matter hyperintensities and MCI or Alzheimer's disease together added up to even faster and steeper cognitive decline.

The crucial point is that this was happening in the absence of major cardiovascular events such as heart attacks, indicating that it’s not enough to just reduce your cardiovascular risk factors to a moderate level — every little bit of vascular damage counts.

Reference: 

Source: 

Topics: 

tags: 

tags development: 

tags lifestyle: 

tags problems: 

New brief tool to screen for cognitive impairment in elderly patients

December, 2010

A 2-minute questionnaire does an excellent job of indicating older adults with cognitive impairment.

A simple new cognitive assessment tool with only 16 items appears potentially useful for identifying problems in thinking, learning and memory among older adults. The Sweet 16 scale is scored from zero to 16 (with 16 representing the best score) and includes questions that address orientation (identification of person, place, time and situation), registration, digit spans (tests of verbal memory) and recall. The test requires no props (not even pencil and paper) and is easy to administer with a minimum of training. It only takes an average of 2 minutes to complete.

A score of 14 or less correctly identified 80% of those with cognitive impairment (as identified by the Informant Questionnaire on Cognitive Decline in the Elderly) and correctly identified 70% of those who did not have cognitive impairment. In comparison, the standard MMSE correctly identified 64% of those with cognitive impairment and 86% of those who were not impaired. In other words, the Sweet 16 missed diagnosing 20% of those who were (according to this other questionnaire) impaired and incorrectly diagnosed as impaired 30% of those who were not impaired, while the MMSE missed 36% of those who were impaired but only incorrectly diagnosed as impaired 14% of those not impaired.

Thus, the Sweet 16 seems to be a great ‘first cut’, since its bias is towards over-diagnosing impairment. It should also be remembered that the IQCDE is not the gold standard for cognitive impairment; its role here is to provide a basis for comparison between the new test and the more complex MMSE. In comparison with a clinician’s diagnosis, Sweet 16 scores of 14 or less occurred in 99% of patients diagnosed by a clinician to have cognitive impairment and 28% of those without such a diagnosis.

The great benefit of the new test is of course its speed and simplicity, and it seems to offer great promise as an initial screening tool. Another benefit is that it supposedly is unaffected by the patient’s education, unlike the MMSE. The tool is open access.

The Sweet 16 was developed using information from 774 patients who completed the MMSE, and then validated using a different group of 709 older adults.

Reference: 

[1983] Fong, T. G., Jones R. N., Rudolph J. L., Yang F. M., Tommet D., Habtemariam D., et al.
(2010).  Development and Validation of a Brief Cognitive Assessment Tool: The Sweet 16.
Arch Intern Med. archinternmed.2010.423 - archinternmed.2010.423.

Source: 

Topics: 

tags development: 

tags problems: 

DHA improves memory in older adults with cognitive impairment

December, 2010

A largish clinical study of cognitively impaired older adults has found six months of DHA supplements improved visual and verbal learning, though not working memory.

There have been mixed findings about the benefits of DHA (an omega-3 fatty acid), but in a study involving 485 older adults (55+) with age-related cognitive impairment, those randomly assigned to take DHA for six months improved the score on a visuospatial learning and episodic memory test. Higher levels of DHA in the blood correlated with better scores on the paired associate learning task. DHA supplementation was also associated with better verbal recognition, but not better working memory or executive function.

Other research has found no benefit from DHA to those already with Alzheimer’s, although those with Alzheimer’s tend to have lower levels of DHA in the blood. These findings reinforce the idea that the benefit of many proactive lifestyle strategies, such as diet and exercise, may depend mainly on their use before systems deteriorate.

The daily dose of algal DHA was 900 mg. The study took place at 19 clinical sites in the U.S., and those involved had an MMSE score greater than 26.

Reference: 

Source: 

Topics: 

tags development: 

tags lifestyle: 

tags problems: 

More evidence that older adults become less able to ignore distraction

December, 2010

A new study adds to the evidence that our ability to focus on one thing and ignore irrelevant information gets worse with age, and that this may be a crucial factor in age-related cognitive impairment.

A study involving young (average age 22) and older adults (average age 77) showed participants pictures of overlapping faces and places (houses and buildings) and asked them to identify the gender of the person. While the young adults showed activity in the brain region for processing faces (fusiform face area) but not in the brain region for processing places (parahippocampal place area), both regions were active in the older adults. Additionally, on a surprise memory test 10 minutes later, older adults who showed greater activation in the place area were more likely to recognize what face was originally paired with what house.

These findings confirm earlier research showing that older adults become less capable of ignoring irrelevant information, and shows that this distracting information doesn’t merely interfere with what you’re trying to attend to, but is encoded in memory along with that information.

Reference: 

Source: 

Topics: 

tags development: 

tags memworks: 

tags problems: 

Does early retirement dull your brain?

November, 2010

A very large cross-country comparison of U.S. and European countries reveals a correlation between lower average scores on a simple memory test and higher rates of retirement among 60-64 year olds.

Do retired people tend to perform more poorly on cognitive tests than working people because you’re more likely to retire if your mental skills are starting to decline, or because retirement dulls the brain?

For nearly 20 years the United States has surveyed more than 22,000 Americans over age 50 every two years, and administered memory tests. A similar survey has also been taking place in Europe. A comparison of the 2004 data for the U.S., England, and eleven European countries (Austria, Belgium, Denmark, France, Germany, Greece, Italy, The Netherlands, Spain, Sweden, and Switzerland) has now revealed differences in the level of cognitive performance among older adults between the countries (the 60-64 year age group was used as it represents the greatest retirement-age difference between nations).

These differences show some correlation with differences in the age of retirement. Moreover, the differences also correlate to differences in government policy in terms of pensions — supporting the view that it is retirement that is causing the mental decline, not the decline that brings about early retirement.

Memory was tested through a simple word recall task — recalling a list of 10 nouns immediately and 10 minutes later. People in the United States did best, with an average score of 11 out of a possible 20. Those in England were very close behind, and Denmark and Sweden were both around 10. Switzerland, Germany and the Netherlands, and Austria were all clustered between 9 and 9 ½; Belgium and Greece a little lower. France averaged 8; Italy 7; Spain (the lowest) just over 6.

Now when the average cognitive score is mapped against the percentage of retired for 60-64 year olds, the points for each country (with one exception) cluster around a line with a slope of -5, indicating that there is a systematic relationship between these two variables, and that on average being retired is associated with a lower memory score of about 5 points on a 20-point scale. This is a very large effect.

But the correlation is not (unsurprisingly) exact. Although the top scorers, U.S., England and Denmark, are among those nations who have lower retirement rates at this age, Switzerland has the same levels as the U.S., and Sweden has the fewest retired of all (around 40% compared to around 47% for the U.S. and Switzerland). Most interesting of all, why does Spain, which has around 74% retired, show such a low cognitive score, when five other countries have even higher rates of retirement (Austria has over 90% retired)?

There are of course many other differences between the countries. One obvious one to look at would be the degree to which older people who are not working for pay are involved in voluntary work. There’s also the question of the extent to which different countries might have different occupation profiles, assuming that some occupations are more mentally stimulating than others, and the degree to which retired people are engaged in other activities, such as hobbies and clubs.

The paper also raises an important point, namely, that retirement may be preceded by years of ‘winding-down’, during which workers become progressively more reluctant to keep up with changes in their field, and employers become increasingly reluctant to invest in their training.

Reference: 

[1932] Rohwedder, S., & Willis R. J.
(2010).  Mental Retirement.
Journal of Economic Perspectives. 24(1), 119 - 138.

Source: 

Topics: 

tags: 

tags development: 

tags problems: 

How the Alzheimer’s gene works; implications for treatment

November, 2010

Research with genetically engineered mice shows why the apoE4 gene is so strongly associated with Alzheimer’s, and points to strategies for countering its effects.

Carriers of the so-called ‘Alzheimer’s gene’ (apoE4) comprise 65% of all Alzheimer's cases. A new study helps us understand why that’s true. Genetically engineered mice reveal that apoE4 is associated with the loss of GABAergic interneurons in the hippocampus. This is consistent with low levels of GABA (produced by these neurons) typically found in Alzheimer’s brains. This loss was associated with cognitive impairment in the absence of amyloid beta accumulation, demonstrating it is an independent factor in the development of this disease.

The relationship with the other major characteristic of the Alzheimer’s brain, tau tangles, was not independent. When the mice’s tau protein was genetically eliminated, the mice stopped losing GABAergic interneurons, and did not develop cognitive deficits. Previous research has shown that suppressing tau protein can also prevent amyloid beta from causing memory deficits.

Excitingly, daily injections of pentobarbital, a compound that enhances GABA action, restored cognitive function in the mice.

The findings suggest that increasing GABA signaling and reducing tau are potential strategies to treat or prevent apoE4-related Alzheimer's disease.

Reference: 

Source: 

Topics: 

tags development: 

tags memworks: 

tags problems: 

Low testosterone linked to Alzheimer's disease

November, 2010

Another small study supports earlier research suggesting that low testosterone is a risk factor for Alzheimer’s for older men.

A Chinese study involving 153 older men (55+; average age 72), of whom 47 had mild cognitive impairment, has found that 10 of those in the MCI group developed probable Alzheimer's disease within a year. These men also had low testosterone, high blood pressure, and elevated levels of the ApoE4 protein.

The findings support earlier indications that low testosterone is associated with increased risk of Alzheimer's in men, but it’s interesting to note the combination with high blood pressure and having the ApoE4 gene. I look forward to a larger study.

Reference: 

Chu, L-W. et al. 2010. Bioavailable Testosterone Predicts a Lower Risk of Alzheimer’s Disease in Older Men. Journal of Alzheimer's Disease, 21 (4), 1335-45.

Source: 

Topics: 

tags: 

tags development: 

tags problems: 

Vitamin B12 may reduce risk of Alzheimer's disease

November, 2010

A long-running study adds to the evidence that high levels of homocysteine increase the risk of developing Alzheimer’s, and higher levels of vitamin B12 help to bring down these levels and reduce risk.

A seven-year study involving 271 Finns aged 65-79 has revealed that increases in the level of homocysteine in the blood were associated with increasing risk of developing Alzheimer’s (each micromolar increase in the concentration of homocysteine increased the risk of Alzheimer's by 16%), while increases in the level of vitamin B12 decreased the risk (each picomolar increase in concentration of B12 reduced risk by 2%). A larger study is needed to confirm this. 17 people (6%) developed Alzheimer’s over the course of the study.

Still, these results are consistent with a number of other studies showing greater risk with higher homocysteine and lower B12. High levels of vitamin B12 are known to lower homocysteine. However, studies directly assessing the effects of B12 supplements have had mixed results. Low levels of B12 are common in the elderly.

Reference: 

Source: 

Topics: 

tags: 

tags development: 

tags lifestyle: 

tags problems: 

Heavy smoking in midlife associated with dementia in later years

November, 2010

A very large long-running study has found smoking over two packs per day in middle age more than doubled the chances of developing dementia in later life.

Data from 21,123 people, surveyed between 1978 and 1985 when in their 50s and tracked for dementia from 1994 to 2008, has revealed that those who smoked more than two packs per day in middle age had more than twice the risk of developing dementia, both Alzheimer's and vascular dementia, compared to non-smokers.

A quarter of the participants (25.4%) were diagnosed with dementia during the 23 years follow-up, of whom a little over 20% were diagnosed with Alzheimer's disease and nearly 8% with vascular dementia.

Former smokers, or those who smoked less than half a pack per day, did not appear to be at increased risk. Associations between smoking and dementia did not vary by race or sex.

Smoking is a well-established risk factor for stroke, and is also known to contribute to oxidative stress and inflammation.

Reference: 

[1934] Rusanen, M., Kivipelto M., Quesenberry C. P., Zhou J., & Whitmer R. A.
(2010).  Heavy Smoking in Midlife and Long-term Risk of Alzheimer Disease and Vascular Dementia.
Arch Intern Med. archinternmed.2010.393 - archinternmed.2010.393.

Source: 

Topics: 

tags development: 

tags lifestyle: 

tags problems: 

Old bees' memory fades too

November, 2010
  • New research shows that many old bees, like many older humans, have trouble replacing out-of-date knowledge with new memories.

I love cognitive studies on bees. The whole notion that those teeny-tiny brains are capable of the navigation and communication feats bees demonstrate is so wonderful. Now a new study finds that, just like us, aging bees find it hard to remember the location of a new home.

The study builds on early lab research that demonstrated that old bees find it harder to learn floral odors. In this new study, researchers trained bees to a new nest box while their former nest was closed off. Groups composed of mature and old bees were given several days in which to learn the new home location and to extinguish the bees' memory of their unusable former nest box. The new home was then disassembled, and groups of mixed-age bees were given three alternative nest locations to choose from (including the former nest box). Some old bees (those with symptoms of senescence) preferentially went to the former nest site, despite the experience that should have told them that it was unusable.

The findings demonstrate that memory problems and increasing inflexibility with age are not problems confined to mammals.

Reference: 

Source: 

Topics: 

tags: 

tags development: 

tags memworks: 

tags problems: 

Pages

Subscribe to RSS - seniors