identity memory

Better reading may mean poorer face recognition

January, 2011

Evidence that illiterates use a brain region involved in reading for face processing to a greater extent than readers do, suggests that reading may have hijacked the network used for object recognition.

An imaging study of 10 illiterates, 22 people who learned to read as adults and 31 who did so as children, has confirmed that the visual word form area (involved in linking sounds with written symbols) showed more activation in better readers, although everyone had similar levels of activation in that area when listening to spoken sentences. More importantly, it also revealed that this area was much less active among the better readers when they were looking at pictures of faces.

Other changes in activation patterns were also evident (for example, readers showed greater activation in the planum temporal in response to spoken speech), and most of the changes occurred even among those who acquired literacy in adulthood — showing that the brain re-structuring doesn’t depend on a particular time-window.

The finding of competition between face and word processing is consistent with the researcher’s theory that reading may have hijacked a neural network used to help us visually track animals, and raises the intriguing possibility that our face-perception abilities suffer in proportion to our reading skills.

Reference: 

Source: 

Topics: 

tags: 

tags memworks: 

tags study: 

Face-blindness an example of inability to generalize

October, 2010

It seems that prosopagnosia can be, along with perfect pitch and eidetic memory, an example of what happens when your brain can’t abstract the core concept.

‘Face-blindness’ — prosopagnosia — is a condition I find fascinating, perhaps because I myself have a touch of it (it’s now recognized that this condition represents the end of a continuum rather than being an either/or proposition). The intriguing thing about this inability to recognize faces is that, in its extreme form, it can nevertheless exist side-by-side with quite normal recognition of other objects.

Prosopagnosia that is not the result of brain damage often runs in families, and a study of three family members with this condition has revealed that in some cases at least, the inability to remember faces has to do with failing to form a mental representation that abstracts the essence of the face, sans context. That is, despite being fully able to read facial expressions, attractiveness and gender from the face (indeed one of the family members is an artist who has no trouble portraying fully detailed faces), they couldn’t cope with changes in lighting conditions and viewing angles.

I’m reminded of the phenomenon of perfect pitch, which is characterized by an inability to generalize across acoustically similar tones, so an A in a different key is a completely different note. Interestingly, like prosopagnosia, perfect pitch is now thought to be more common than has been thought (recognition of it is of course limited by the fact that some musical expertise is generally needed to reveal it). This inability to abstract or generalize is also a phenomenon of eidetic memory, and I have spoken before of the perils of this.

(Note: A fascinating account of what it is like to be face-blind, from a person with the condition, can be found at: http://www.choisser.com/faceblind/)

Reference: 

Source: 

Topics: 

tags: 

tags memworks: 

Face recognition ability inherited separately from IQ

January, 2010

Providing support for a modular concept of the brain, a twin study has found that face recognition is heritable, and that it is inherited separately from IQ.

No surprise to me (I’m hopeless at faces), but a twin study has found that face recognition is heritable, and that it is inherited separately from IQ. The findings provide support for a modular concept of the brain, suggesting that some cognitive abilities, like face recognition, are shaped by specialist genes rather than generalist genes. The study used 102 pairs of identical twins and 71 pairs of fraternal twins aged 7 to 19 from Beijing schools to calculate that 39% of the variance between individuals on a face recognition task is attributable to genetic effects. In an independent sample of 321 students, the researchers found that face recognition ability was not correlated with IQ.

Reference: 

Zhu, Q. et al. 2010. Heritability of the specific cognitive ability of face perception. Current Biology, 20 (2), 137-142.

Source: 

Topics: 

tags memworks: 

Face coding varies by gender, sexual orientation, & handedness

July, 2010

Why are women better at recognizing faces? Apparently it has to do with using both sides of your brain, and homosexual men tend to do it too.

Why do women tend to be better than men at recognizing faces? Two recent studies give a clue, and also explain inconsistencies in previous research, some of which has found that face recognition mainly happens in the right hemisphere part of the face fusiform area, and some that face recognition occurs bilaterally. One study found that, while men tended to process face recognition in the right hemisphere only, women tended to process the information in both hemispheres. Another study found that both women and gay men tended to use both sides of the brain to process faces (making them faster at retrieving faces), while heterosexual men tended to use only the right. It also found that homosexual males have better face recognition memory than heterosexual males and homosexual women, and that women have better face processing than men. Additionally, left-handed heterosexual participants had better face recognition abilities than left-handed homosexuals, and also tended to be better than right-handed heterosexuals. In other words, bilaterality (using both sides of your brain) seems to make you faster and more accurate at recognizing people, and bilaterality is less likely in right-handers and heterosexual males (and perhaps homosexual women). Previous research has shown that homosexual individuals are 39% more likely to be left-handed.

Reference: 

Proverbio AM, Riva F, Martin E, Zani A (2010) Face Coding Is Bilateral in the Female Brain. PLoS ONE 5(6): e11242. doi:10.1371/journal.pone.0011242

[1611] Brewster, P. W. H., Mullin C. R., Dobrin R. A., & Steeves J. K. E.
(2010).  Sex differences in face processing are mediated by handedness and sexual orientation.
Laterality: Asymmetries of Body, Brain and Cognition.

Source: 

Topics: 

tags: 

tags memworks: 

Everyone looks the same when you drink

March, 2010

It’s well established that we are better at recognizing faces of our own racial group, but a new study shows that this ability disappears when we’re mildly intoxicated.

It’s well established that we are better at recognizing faces of our own racial group, but a new study shows that this ability disappears when we’re mildly intoxicated. The study tested about 140 university students of Western European and east-Asian descent and found that recognition of different-race faces was unaffected by alcohol, yet both groups showed impaired recognition of own-race faces, bringing it down to about the same level of accuracy as for different-race faces. Those given a placebo drink were unaffected.

Reference: 

Source: 

Topics: 

tags: 

tags lifestyle: 

tags memworks: 

Inner-face advantage in familiar face recognition

Journal Article: 

Campbell, Ruth, Coleman, Michael, Walker, Jane, Benson, Philip J., Wallace, Simon, Michelotti, Joanne & Baron-Cohen, Simon. 1999. When does the inner-face advantage in familiar face recognition arise and why? Visual Cognition, 6(2), 197-216.

  • Adults tend to use inner features (eyes, nose, mouth) to recognize familiar faces.
  • Children tend to use outer features (hair, hairline, jaw, ears) to recognize people they know.
  • The shift from outer to inner features does not occur until the child is 10-11 years old, and may not be reliable until mid-adolescence (14-15).
  • The shift appears to reflect developmental changes in perception rather than simply being an effect of practice.

Although we initially tend to pay attention to obvious features such as hair, it has been long established that familiar faces are recognized better from their inner (eyes, nose, mouth) rather than their outer (hair, hairline, jaw, ears) parts1. Studies have shown that this advantage of inner features does not occur in children until they’re around 10—11 years old. Children younger than this tend to use outer features to recognize people they know2.

Studies investigating the inner-face advantage have used photographs in which parts of faces have been cropped. This may be confusing to young children. It was thought that inner-face processing would be facilitated if blurring was used instead. Accordingly, in this study photographs in which either the inner face or the outer features are blurred were used.

Although it was thought that this would encourage inner-face processing, children seemed to find it harder. Extending the experiment to adolescents, it was found that the inner-face advantage typical of adults, did not appear until 14—15 years of age. A further experiment with learning-disabled adolescents, with a mental age of 5—8 years, found no shift to inner-face processing. This suggests that the shift to inner-face processing is a developmental change, rather than simply reflecting a need to gain sufficient experience in face-processing.

References

1. Ellis, H.D., Shepherd, J.W. & Davies, G.M. 1979. Identification of familiar and unfamiliar faces from internal and external features: Some implications for theories of face recognition. Perception, 8, 431-439.

2. Campbell, R. & Tuck, M. 1995. Children’s recognition of inner and outer face-features of famous faces. Perception, 24, 451-456.

Campbell, R., Walker, J. & Baron-Cohen, S. 1995. The use of internal and external face features in the development of familiar face identification. Journal of Experimental Child Psychology, 59, 196-210.

Topics: 

tags development: 

tags memworks: 

Pages

Subscribe to RSS - identity memory