Working with solvents linked to cognitive problems in less-educated people

June, 2012

A study qualifies evidence that occupational exposure to solvents increases the risk of cognitive impairment later in life.

The study involved 4,134 people (average age 59) who worked at the French national gas and electric company, of whom most worked at the company for their entire career. Their lifetime exposure to chlorinated solvents, petroleum solvents, benzene and non-benzene aromatic solvents was estimated, and they were given the Digit Symbol Substitution Test to assess cognitive performance. Cognitive impairment was defined as scoring below the 25th percentile. Most of the participants (88%) were retired.

For analysis, participants were divided into two groups based on whether they had less than a secondary school education or not. This revealed an interesting finding: higher rates of solvent exposure were associated with cognitive impairment, in a dose-dependent relationship — but only in those with less than a high school education. Recency of solvent exposure also predicted worse cognition among the less-educated (suggesting that at least some of the damage was recoverable).

However, among those with secondary education or higher, there was no significant association between solvent exposure (quantity or recency) and cognition.

Over half the participants (58%) had less than a high school education. Of those, 32% had cognitive impairment — twice the rate in those with more education.

The type of solvent also made a difference, with non-benzene aromatic solvents the most dangerous, followed by benzene solvents, and then chlorinated and petroleum solvents (the rates of cognitive impairment among highly-exposed less-educated, was 36%, 24%, and 14%, respectively).

The findings point to the value of cognitive reserve, but I have several caveats. (Unfortunately, this study appears in a journal to which I don’t have access, so it’s possible the first of this at least is answered in the paper.) The first is that those with less education had higher rates of exposure, which raises the question of a threshold effect. Second is that the cognitive assessment is only at one point of time, lacking both a baseline (do we know what sort of average score adults of this age and with this little education would achieve? A quick online search threw up no such appropriate normative data) and a time-comparison that would give a rate of decline. Third, is that the cognitive assessment is very limited, being based on only one test.

In other words, the failure to find an effect among those with at least a high school education may well reflect the lack of sensitivity in the test (designed to assess brain damage). More sensitive tests, and test comparisons over time, may well give a different answer.

On its own, then, this finding is merely another data-point. But accumulating data-points is how we do science! Hopefully, in due course there’ll be a follow-up that will give us more information.

Reference: 

Related News

A training program designed to help older adults with

Comparison of young adults (mean age 24.5) and older adults (mean age 69.1) in a visual memory test involving multitasking has pinpointed the greater problems older adults have with multitasking.

A study involving 125 younger (average age 19) and older (average age 69) adults has revealed that while younger adults showed better explicit learning, older adults were better at implicit learning. Implicit memory is our unconscious memory, which influences behavior without our awareness.

A two-year study involving 53 older adults (60+) has found that those with a mother who had Alzheimer's disease had significantly more brain atrophy than those with a father or no parent with Alzheimer's disease.

Data from the Baltimore Longitudinal Study on Aging, begun in 1958, has revealed that seniors with hearing loss are significantly more likely to develop dementia than those who retain their hearing.

Shrinking of the

A new molecular compound derived from curcumin (found in turmeric) holds promise for treating brain damage caused by stroke. Turmeric has a long history of use in Ayurvedic and Chinese traditional medicine.

The new label of ‘metabolic syndrome’ applies to those having three or more of the following risk factors: high blood pressure, excess belly fat, higher than normal triglycerides, high blood sugar and low high-density lipoprotein (HDL) cholesterol (the "good" cholesterol).

Lesions of the brain microvessels include white-matter hyperintensities and the much less common silent infarcts leading to loss of white-matter tissue.

Another study has come out proclaiming the cognitive benefits of walking for older adults.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news