Working with solvents linked to cognitive problems in less-educated people

June, 2012

A study qualifies evidence that occupational exposure to solvents increases the risk of cognitive impairment later in life.

The study involved 4,134 people (average age 59) who worked at the French national gas and electric company, of whom most worked at the company for their entire career. Their lifetime exposure to chlorinated solvents, petroleum solvents, benzene and non-benzene aromatic solvents was estimated, and they were given the Digit Symbol Substitution Test to assess cognitive performance. Cognitive impairment was defined as scoring below the 25th percentile. Most of the participants (88%) were retired.

For analysis, participants were divided into two groups based on whether they had less than a secondary school education or not. This revealed an interesting finding: higher rates of solvent exposure were associated with cognitive impairment, in a dose-dependent relationship — but only in those with less than a high school education. Recency of solvent exposure also predicted worse cognition among the less-educated (suggesting that at least some of the damage was recoverable).

However, among those with secondary education or higher, there was no significant association between solvent exposure (quantity or recency) and cognition.

Over half the participants (58%) had less than a high school education. Of those, 32% had cognitive impairment — twice the rate in those with more education.

The type of solvent also made a difference, with non-benzene aromatic solvents the most dangerous, followed by benzene solvents, and then chlorinated and petroleum solvents (the rates of cognitive impairment among highly-exposed less-educated, was 36%, 24%, and 14%, respectively).

The findings point to the value of cognitive reserve, but I have several caveats. (Unfortunately, this study appears in a journal to which I don’t have access, so it’s possible the first of this at least is answered in the paper.) The first is that those with less education had higher rates of exposure, which raises the question of a threshold effect. Second is that the cognitive assessment is only at one point of time, lacking both a baseline (do we know what sort of average score adults of this age and with this little education would achieve? A quick online search threw up no such appropriate normative data) and a time-comparison that would give a rate of decline. Third, is that the cognitive assessment is very limited, being based on only one test.

In other words, the failure to find an effect among those with at least a high school education may well reflect the lack of sensitivity in the test (designed to assess brain damage). More sensitive tests, and test comparisons over time, may well give a different answer.

On its own, then, this finding is merely another data-point. But accumulating data-points is how we do science! Hopefully, in due course there’ll be a follow-up that will give us more information.

Reference: 

Related News

The first detailed characterization of the molecular structures of amyloid-beta fibrils that develop in the brains of those with Alzheimer's disease suggests that different molecular structures of amyloid-beta fibrils may distinguish the brains of Alzheimer's patients with different clinical his

A study involving mice lacking a master clock gene called Bmal1 has found that as the mice aged, their brains showed patterns of damage similar to those seen in Alzheimer's disease and other neurodegenerative disorders. Many of the injuries seemed to be caused by free radicals.

A new study involving 96 older adults initially free of dementia at the time of enrollment, of whom 12 subsequently developed mild Alzheimer’s, has clarified three fundamental issues about Alzheimer's: where it starts, why it starts there, and how it spreads.

Analysis of 5715 cases from the National Alzheimer's Coordinating Center (NACC) database has found that nearly 80% of more than 4600 Alzheimer's disease patients showed some degree of vascular pathology, compared with 67% of the controls, and 66% in the Parkinson's group.

The jugular venous reflux (JVR) occurs when the pressure gradient reverses the direction of blood flow in the veins, causing blood to leak backwards into the brain.

The

Following on from the evidence that Alzheimer’s brains show higher levels of metals such as iron, copper, and zinc, a mouse study has found that amyloid plaques in Alzheimer’s-like brains with significant neurodegeneration have about 25% more copper than those with little neurodegeneration.

An Italian study has found that a significant percentage of Alzheimer’s patients suffer from Obstructive Sleep Apnea Syndrome. This respiratory disorder, which causes people to temporarily stop breathing during their sleep, affects cerebral blood flow, promoting cognitive decline.

Data from 70 older adults (average age 76) in the Baltimore Longitudinal Study of Aging has found that those who reported poorer sleep (shorter sleep duration and lower sleep quality) showed a greater buildup of amyloid-beta plaques.

A new discovery helps explain why the “Alzheimer’s gene” ApoE4 is such a risk factor.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news