Why a select group of seniors retain their cognitive abilities

December, 2011
  • Comparison of the brains of octogenarians whose memories match those of middle-aged people reveals important differences between their brains and those of cognitively-normal seniors.

A certain level of mental decline in the senior years is regarded as normal, but some fortunate few don’t suffer from any decline at all. The Northwestern University Super Aging Project has found seniors aged 80+ who match or better the average episodic memory performance of people in their fifties. Comparison of the brains of 12 super-agers, 10 cognitively-normal seniors of similar age, and 14 middle-aged adults (average age 58) now reveals that the brains of super-agers also look like those of the middle-aged. In contrast, brain scans of cognitively average octogenarians show significant thinning of the cortex.

The difference between the brains of super-agers and the others was particularly marked in the anterior cingulate cortex. Indeed, the super agers appeared to have a much thicker left anterior cingulate cortex than the middle-aged group as well. Moreover, the brain of a super-ager who died revealed that, although there were some plaques and tangles (characteristic, in much greater quantities, of Alzheimer’s) in the mediotemporal lobe, there were almost none in the anterior cingulate. (But note an earlier report from the researchers)

Why this region should be of special importance is somewhat mysterious, but the anterior cingulate is part of the attention network, and perhaps it is this role that underlies the superior abilities of these seniors. The anterior cingulate also plays a role error detection and motivation; it will be interesting to see if these attributes are also important.

While the precise reason for the anterior cingulate to be critical to retaining cognitive abilities might be mysterious, the lack of cortical atrophy, and the suggestion that super-agers’ brains have much reduced levels of the sort of pathological damage seen in most older brains, adds weight to the growing evidence that cognitive aging reflects clinical problems, which unfortunately are all too common.

Sadly, there are no obvious lifestyle factors involved here. The super agers don’t have a lifestyle any different from their ‘cognitively average’ counterparts. However, while genetics might be behind these people’s good fortune, that doesn’t mean that lifestyle choices don’t make a big difference to those of us not so genetically fortunate. It seems increasingly clear that for most of us, without ‘super-protective genes’, health problems largely resulting from lifestyle choices are behind much of the damage done to our brains.

It should be emphasized that these unpublished results are preliminary only. This conference presentation reported on data from only 12 of 48 subjects studied.

Reference: 

Harrison, T., Geula, C., Shi, J., Samimi, M., Weintraub, S., Mesulam, M. & Rogalski, E. 2011. Neuroanatomic and pathologic features of cognitive SuperAging. Presented at a poster session at the 2011 Society for Neuroscience conference.

Related News

Preliminary findings from a small study show that older adults (68-91), after learning to use Facebook, performed about 25% better on tasks designed to measure their ability to continuously monitor and to quickly add or delete the contents of their

Recent research has suggested that sleep problems might be a risk factor in developing Alzheimer’s, and in mild cognitive impairment.

The issue of the effect of menopause on women’s cognition, and whether hormone therapy helps older women fight cognitive decline and dementia, has been a murky one. Increasing evidence suggests that the timing and type of therapy is critical.

A new study adds more support to the idea that the increasing difficulty in learning new information and skills that most of us experience as we age is not down to any difficulty in acquiring new information, but rests on the interference from all the old information.

I’ve written before about the gathering evidence that sensory impairment, visual impairment and hearing loss in particular, is a risk factor for age-related cognitive decline and dementia.

Here’s an encouraging study for all those who think that, because of age or physical damage, they must resign themselves to whatever cognitive impairment or decline they have suffered.

Providing some support for the finding I recently reported — that problems with semantic knowledge in those with mild cognitive impairment (

Previous research has pointed to an association between not having teeth and a higher risk of cognitive decline and dementia. One reason might have to do with inflammation — inflammation is a well-established risk factor, and at least one study has linked gum disease to a higher dementia risk.

Sad to say, another large study has given the thumbs down to ginkgo biloba preventing Alzheimer’s disease.

New research suggests that reliance on the standard test Alzheimer's Disease Assessment Scale—Cognitive Behavior Section (ADAS-Cog) to measure cognitive changes in Alzheimer’s patients is a bad idea. The test is the most widely used measure of cognitive performance in clinical trials.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news