Why our brains produce fewer new neurons in old age

August, 2011

New research explains why fewer new brain cells are created in the hippocampus as we get older.

It wasn’t so long ago we believed that only young brains could make neurons, that once a brain was fully matured all it could do was increase its connections. Then we found out adult brains could make new neurons too (but only in a couple of regions, albeit critical ones). Now we know that neurogenesis in the hippocampus is vital for some operations, and that the production of new neurons declines with age (leading to the idea that the reduction in neurogenesis may be one reason for age-related cognitive decline).

What we didn’t know is why this happens. A new study, using mice genetically engineered so that different classes of brain cells light up in different colors, has now revealed the life cycle of stem cells in the brain.

Adult stem cells differentiate into progenitor cells that ultimately give rise to mature neurons. It had been thought that the stem cell population remained stable, but that these stem cells gradually lose their ability to produce neurons. However, the mouse study reveals that during the mouse's life span, the number of brain stem cells decreased 100-fold. Although the rate of this decrease actually slows with age, and the output per cell (the number of progenitor cells each stem cell produces) increases, nevertheless the pool of stem cells is dramatically reduced over time.

The reason this happens (and why it wasn’t what we expected) is explained in a computational model developed from the data. It seems that stem cells in the brain differ from other stem cells. Adult stem cells in the brain wait patiently for a long time until they are activated. They then undergo a series of rapid divisions that give rise to progeny that differentiate into neurons, before ‘retiring’ to become astrocytes. What this means is that, unlike blood or gut stem cells (that renew themselves many times), brain stem cells are only used once.

This raises a somewhat worrying question: if we encourage neurogenesis (e.g. by exercise or drugs), are we simply using up stem cells prematurely? The researchers suggest the answer depends on how the neurogenesis has been induced. Parkinson's disease and traumatic brain injury, for example, activate stem cells directly, and so may reduce the stem cell population. However, interventions such as exercise stimulate the progenitor cells, not the stem cells themselves.

Reference: 

Related News

While everyone agrees that amyloid-beta protein is part of the problem, not everyone agrees that amyloid plaques are the cause (or one of them) of Alzheimer’s. Other forms of amyloid-beta have been pointed to, including floating clumps called oligomers or ADDLs.

A few months ago, I reported on an exciting finding that

The American Academy of Neurology has updated its guidelines on when people with dementia should stop driving.

Another gene has been identified that appears to increase risk of Alzheimer’s. The gene, MTHFD1L, is located on chromosome six.

Previous research has found that unexplained weight loss is an early sign of Alzheimer's.

Amnestic mild cognitive impairment often leads to Alzheimer's disease, but what predicts aMCI?

A pilot study involving 21 institutionalized individuals with moderate-to-severe Alzheimer’s found that, although drinking two 4-oz glasses of apple juice daily for a month produced no change in the Dementia Rating Scale or in the Activities of Daily Living measure, there was a significant (27%)

A pilot study involving 10 patients with moderate Alzheimer's disease, of whom half were randomly assigned to the treatment, has found that two weeks of receiving daily (25 minute) periods of repetitive transcranial magnetic stimulation to the prefrontal

A study involving outpatients with early stage Alzheimer’s found that their performance on some computerized tests of executive function and visual attention, including a simulated driving task, improved significantly after three months of taking

A study involving 54 older adults (66-76) and 58 younger adults (18-35) challenges the idea that age itself causes people to become more risk-averse and to make poorer decisions.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news