Why our brains produce fewer new neurons in old age

August, 2011

New research explains why fewer new brain cells are created in the hippocampus as we get older.

It wasn’t so long ago we believed that only young brains could make neurons, that once a brain was fully matured all it could do was increase its connections. Then we found out adult brains could make new neurons too (but only in a couple of regions, albeit critical ones). Now we know that neurogenesis in the hippocampus is vital for some operations, and that the production of new neurons declines with age (leading to the idea that the reduction in neurogenesis may be one reason for age-related cognitive decline).

What we didn’t know is why this happens. A new study, using mice genetically engineered so that different classes of brain cells light up in different colors, has now revealed the life cycle of stem cells in the brain.

Adult stem cells differentiate into progenitor cells that ultimately give rise to mature neurons. It had been thought that the stem cell population remained stable, but that these stem cells gradually lose their ability to produce neurons. However, the mouse study reveals that during the mouse's life span, the number of brain stem cells decreased 100-fold. Although the rate of this decrease actually slows with age, and the output per cell (the number of progenitor cells each stem cell produces) increases, nevertheless the pool of stem cells is dramatically reduced over time.

The reason this happens (and why it wasn’t what we expected) is explained in a computational model developed from the data. It seems that stem cells in the brain differ from other stem cells. Adult stem cells in the brain wait patiently for a long time until they are activated. They then undergo a series of rapid divisions that give rise to progeny that differentiate into neurons, before ‘retiring’ to become astrocytes. What this means is that, unlike blood or gut stem cells (that renew themselves many times), brain stem cells are only used once.

This raises a somewhat worrying question: if we encourage neurogenesis (e.g. by exercise or drugs), are we simply using up stem cells prematurely? The researchers suggest the answer depends on how the neurogenesis has been induced. Parkinson's disease and traumatic brain injury, for example, activate stem cells directly, and so may reduce the stem cell population. However, interventions such as exercise stimulate the progenitor cells, not the stem cells themselves.

Reference: 

Related News

Preliminary findings from a small study show that older adults (68-91), after learning to use Facebook, performed about 25% better on tasks designed to measure their ability to continuously monitor and to quickly add or delete the contents of their

Recent research has suggested that sleep problems might be a risk factor in developing Alzheimer’s, and in mild cognitive impairment.

The issue of the effect of menopause on women’s cognition, and whether hormone therapy helps older women fight cognitive decline and dementia, has been a murky one. Increasing evidence suggests that the timing and type of therapy is critical.

A new study adds more support to the idea that the increasing difficulty in learning new information and skills that most of us experience as we age is not down to any difficulty in acquiring new information, but rests on the interference from all the old information.

I’ve written before about the gathering evidence that sensory impairment, visual impairment and hearing loss in particular, is a risk factor for age-related cognitive decline and dementia.

Here’s an encouraging study for all those who think that, because of age or physical damage, they must resign themselves to whatever cognitive impairment or decline they have suffered.

Providing some support for the finding I recently reported — that problems with semantic knowledge in those with mild cognitive impairment (

Previous research has pointed to an association between not having teeth and a higher risk of cognitive decline and dementia. One reason might have to do with inflammation — inflammation is a well-established risk factor, and at least one study has linked gum disease to a higher dementia risk.

Sad to say, another large study has given the thumbs down to ginkgo biloba preventing Alzheimer’s disease.

New research suggests that reliance on the standard test Alzheimer's Disease Assessment Scale—Cognitive Behavior Section (ADAS-Cog) to measure cognitive changes in Alzheimer’s patients is a bad idea. The test is the most widely used measure of cognitive performance in clinical trials.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news