Why it gets harder to remember as we get older

June, 2011

A new study finds that older adults have more difficulty in recognizing new information as ‘new’, and this is linked to degradation of the path leading into the hippocampus.

As we get older, when we suffer memory problems, we often laughingly talk about our brain being ‘full up’, with no room for more information. A new study suggests that in some sense (but not the direct one!) that’s true.

To make new memories, we need to recognize that they are new memories. That means we need to be able to distinguish between events, or objects, or people. We need to distinguish between them and representations already in our database.

We are all familiar with the experience of wondering if we’ve done something. Is it that we remember ourselves doing it today, or are we remembering a previous occasion? We go looking for the car in the wrong place because the memory of an earlier occasion has taken precedence over today’s event. As we age, we do get much more of this interference from older memories.

In a new study, the brains of 40 college students and older adults (60-80) were scanned while they viewed pictures of everyday objects and classified them as either "indoor" or "outdoor." Some of the pictures were similar but not identical, and others were very different. It was found that while the hippocampus of young students treated all the similar pictures as new, the hippocampus of older adults had more difficulty with this, requiring much more distinctiveness for a picture to be classified as new.

Later, the participants were presented with completely new pictures to classify, and then, only a few minutes later, shown another set of pictures and asked whether each item was "old," "new" or "similar." Older adults tended to have fewer 'similar' responses and more 'old' responses instead, indicating that they could not distinguish between similar items.

The inability to recognize information as "similar" to something seen recently is associated with “representational rigidity” in two areas of the hippocampus: the dentate gyrus and CA3 region. The brain scans from this study confirm this, and find that this rigidity is associated with changes in the dendrites of neurons in the dentate/CA3 areas, and impaired integrity of the perforant pathway — the main input path into the hippocampus, from the entorhinal cortex. The more degraded the pathway, the less likely the hippocampus is to store similar memories as distinct from old memories.

Apart from helping us understand the mechanisms of age-related cognitive decline, the findings also have implications for the treatment of Alzheimer’s. The hippocampus is one of the first brain regions to be affected by the disease. The researchers plan to conduct clinical trials in early Alzheimer's disease patients to investigate the effect of a drug on hippocampal function and pathway integrity.

Reference: 

Related News

While everyone agrees that amyloid-beta protein is part of the problem, not everyone agrees that amyloid plaques are the cause (or one of them) of Alzheimer’s. Other forms of amyloid-beta have been pointed to, including floating clumps called oligomers or ADDLs.

A few months ago, I reported on an exciting finding that

The American Academy of Neurology has updated its guidelines on when people with dementia should stop driving.

Another gene has been identified that appears to increase risk of Alzheimer’s. The gene, MTHFD1L, is located on chromosome six.

Previous research has found that unexplained weight loss is an early sign of Alzheimer's.

Amnestic mild cognitive impairment often leads to Alzheimer's disease, but what predicts aMCI?

A pilot study involving 21 institutionalized individuals with moderate-to-severe Alzheimer’s found that, although drinking two 4-oz glasses of apple juice daily for a month produced no change in the Dementia Rating Scale or in the Activities of Daily Living measure, there was a significant (27%)

A pilot study involving 10 patients with moderate Alzheimer's disease, of whom half were randomly assigned to the treatment, has found that two weeks of receiving daily (25 minute) periods of repetitive transcranial magnetic stimulation to the prefrontal

A study involving outpatients with early stage Alzheimer’s found that their performance on some computerized tests of executive function and visual attention, including a simulated driving task, improved significantly after three months of taking

A study involving 54 older adults (66-76) and 58 younger adults (18-35) challenges the idea that age itself causes people to become more risk-averse and to make poorer decisions.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news