When age helps decision making

October, 2011

New study modifies findings that younger adults are better decision-makers by showing older adults are better when the scenarios involve multiple considerations.

Research has shown that younger adults are better decision makers than older adults — a curious result. A new study tried to capture more ‘real-world’ decision-making, by requiring participants to evaluate each result in order to strategize the next choice.

This time (whew!), the older adults did better.

In the first experiment, groups of older (60-early 80s) and younger (college-age) adults received points each time they chose from one of four options and tried to maximize the points they earned.  For this task, the younger adults were more efficient at selecting the options that yielded more points.

In the second experiment, the rewards received depended on the choices made previously.  The “decreasing option” gave a larger number of points on each trial, but caused rewards on future trials to be lower. The “increasing option” gave a smaller reward on each trial but caused rewards on future trials to increase.  In one version of the test, the increasing option led to more points earned over the course of the experiment; in another, chasing the increasing option couldn’t make up for the points that could be accrued grabbing the bigger bite on each trial.

The older adults did better on every permutation.

Understanding more complex scenarios is where experience tells. The difference in performance also may reflect the different ways younger and older adults use their brains. Decision-making can involve two different reward learning systems, according to recent thinking. In the model-based system, a cognitive model is constructed that shows how various actions and their rewards are connected to each other. Decisions are made by simulating how one decision will affect future decisions. In the model-free system, on the other hand, only values associated with each choice are considered.

These systems are rooted in different parts of the brain. The model-based system uses the intraparietal sulcus and lateral prefrontal cortex, while the model-free system uses the ventral striatum. There is some evidence that younger adults use the ventral striatum (involved in habitual, reflexive learning and immediate reward) for decision-making more than older adults, and older adults use the dorsolateral prefrontal cortex (involved in more rational, deliberative thinking) more than younger adults.

Reference: 

Related News

A study involving 254 people with dementia living at home has found that 99% of people with dementia and 97% of their caregivers had one or more unmet needs, 90% of which were safety-related.

A new U.S. study suggests that Alzheimer's disease and other dementias are markedly under-reported on death certificates and medical records. Death certificates tend to only provide an immediate cause, such as pneumonia, and don’t mention the underlying condition that provoked it.

It’s often argued that telling people that they carry genes increasing their risk of Alzheimer’s will simply upset them to no purpose. A new study challenges that idea.

11 new genetic susceptibility factors for Alzheimer’s identified

Understanding a protein's role in familial Alzheimer's disease

Analysis of data from 237 patients with mild cognitive impairment (mean age 79.9) has found that, compared to those carrying the ‘normal’ ApoE3 gene (the most common variant of the ApoE gene), the ApoE4 carriers showed markedly greater rates of shrinkage in 13 of 15 brain regions thought to be k

Analysis of data from more than 8,000 people, most of them older than 60, has revealed that, among the 5,000 people initially tested cognitively normal, carrying one copy of the “Alzheimer’s gene” (ApoE4) only slightly increased men’s risk of developing

Analysis of 700 subjects from the Alzheimer's Disease Neuroimaging Initiative has revealed a genetic mutation (rs4728029) that’s associated with people who develop Alzheimer’s pathology but don’t show clinical symptoms in their lifetime.

Analysis of brain scans and cognitive scores of 64 older adults from the NIA's Baltimore Longitudinal Study of Aging (average age 76) has found that, between the most cognitively stable and the most declining (over a 12-year period), there was no significant difference in the total amount of amy

A pilot study involving 94 older adults, of whom 18 had Alzheimer’s, 24 had

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news