Some chronic viral infections could contribute to age-related cognitive decline

  • A longitudinal study confirms findings from cross-sectional studies that certain common viral infections are factors in age-related cognitive decline.

Growing research has implicated infections as a factor in age-related cognitive decline, but these have been cross-sectional (comparing different individuals, who will have a number of other, possibly confounding, attributes). Now a large longitudinal study provides more evidence that certain chronic viral infections could contribute to subtle cognitive deterioration in apparently healthy older adults.

The study involved 1,022 older adults (65+), who had annual evaluations for five years. It revealed an association between cognitive decline and exposure to several viruses: cytomegalovirus (CMV), herpes simplex (HSV 2), and the protozoa Toxoplasma gondii.

More specifically, the IgG levels for HSV-2 were significantly associated with baseline cognitive scores, while the IgG levels for HSV-2 (genital herpes), TOX (which has been much in the news in recent years for being harbored in domestic cats, and being implicated in various neurological disorders), and CMV (a common virus which unfortunately rarely causes symptoms), but not HSV-1 (the cold sore virus), were significantly associated with greater temporal cognitive decline that varied by type of infection.

More research is obviously needed to determine more precisely what the role of different infectious agents is in cognitive decline, but the findings do point to a need for a greater emphasis on preventing and treating infections. They also add to the growing evidence that age-related cognitive decline isn't 'normal', but something that occurs when other health-related factors come into play.

http://www.eurekalert.org/pub_releases/2016-02/uops-scv020416.php

Reference: 

Related News

A survey of 7,072 older adults in six provinces across China, with one rural and one urban community in each province, has identified 359 older adults with dementia and 328 with depression.

A survey of 7796 older adults (65+) living in three geographic areas in England has allowed us to compare dementia rates over time, with an identical survey having been taken between 1989 and 1994. The overall prevalence of dementia fell significantly, from 8.3% to 6.5%.

A large Danish study comparing two groups of nonagenarians born 10 years apart has found that not only were people born in 1915 nearly a third (32%) more likely to reach the age of 95 than those in the 1905 cohort, but members of the group born in 1915 performed significantly better on tests of

A five-year study involving 525 older adults (70+) found 46 had Alzheimer’s or aMCI and a further 28 went on to develop the conditions.

A three-year study involving 152 adults aged 50 and older, of whom 52 had been recently diagnosed with mild cognitive impairment and 31 were diagnosed with Alzheimer's disease, has found that those with mild or no cognitive impairment who initially had amyloid-beta plaques showed greater cogniti

More evidence for early changes in the eye in Alzheimer’s disease comes from a study involving both rats and postmortem human retinas.

Blocking a receptor involved in inflammation in the brains of mice with severe Alzheimer’s produced marked recovery in blood flow and vascular reactivity, a dramatic reduction in toxic amyloid-beta, and significant improvements in learning and memory.

A multi-year study involving 207 healthy older adults, in which their spinal fluids were repeatedly sampled and their brains repeatedly scanned, has found that disruptions in the default mode network emerges about the same time as chemical markers of Alzheimer’s appear in the spinal fluid (decre

An analysis of the anatomical connectivity in the brains of 15 people with Alzheimer's disease, 68 with mild cognitive impairment and 28 healthy older individuals, has found several measures showed disease effects:

The first detailed characterization of the molecular structures of amyloid-beta fibrils that develop in the brains of those with Alzheimer's disease suggests that different molecular structures of amyloid-beta fibrils may distinguish the brains of Alzheimer's patients with different clinical his

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news