Physical activity linked to greater mental flexibility in older adults

  • A correlation has been found between physical activity in healthy older adults and more variable resting-state brain activity.
  • More variable resting-state activity in older adults has previously been linked to better cognition.
  • No such correlation was found between cardiorespiratory fitness and resting-state brain activity.
  • The finding supports previous evidence linking higher levels of physical activity in old age with better cognition and brain health.

A study involving 100 healthy older adults (aged 60-80) has found that those with higher levels of physical activity showed more variable spontaneous brain activity in certain brain regions (including the precuneus, hippocampus, medial and lateral prefrontal, and temporal cortices). Moreover, this relationship was positively associated with better white-matter structure.

Higher rates of activity when the brain is “at rest” have previously been shown to be associated with better cognitive performance in older adults, especially in IQ and memory.

The brain regions showing this relationship all play an important role in major resting-state networks, including the default mode network, the motor network, and networks associated with executive control and salience detection. They are all highly connected.

Participants' physical activity over a week was measured using accelerometers. Cardiorespiratory fitness was also assessed. Participants were generally not very active and not very fit.

The findings add to evidence linking higher fitness and physical activity with greater brain integrity and higher cognitive performance. They are also consistent with previous studies showing an increase in such brain signal fluctuations among older adults participating in physical exercise programs.

Interestingly, level of brain activity fluctuations was only correlated with physical activity, not with cardiorespiratory fitness. This indicates that CRF and physical exercise cannot be considered as functional equivalents — there must be some aspects of physical activity not captured by a measure of cardiorespiratory fitness.

It's also worth noting that there wasn't a significant correlation between sedentary time and resting-state brain activity fluctuations, although this may be because the participants all showed not-very-dissimilar levels of sedentary time.

http://www.eurekalert.org/pub_releases/2015-08/uoia-slp082415.php

Reference: 

Burzynska AZ, Wong CN, Voss MW, Cooke GE, Gothe NP, Fanning J, et al. (2015) Physical Activity Is Linked to Greater Moment-To-Moment Variability in Spontaneous Brain Activity in Older Adults. PLoS ONE 10(8): e0134819. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0134819

Related News

A study involving mice lacking a master clock gene called Bmal1 has found that as the mice aged, their brains showed patterns of damage similar to those seen in Alzheimer's disease and other neurodegenerative disorders. Many of the injuries seemed to be caused by free radicals.

A new study involving 96 older adults initially free of dementia at the time of enrollment, of whom 12 subsequently developed mild Alzheimer’s, has clarified three fundamental issues about Alzheimer's: where it starts, why it starts there, and how it spreads.

Analysis of 5715 cases from the National Alzheimer's Coordinating Center (NACC) database has found that nearly 80% of more than 4600 Alzheimer's disease patients showed some degree of vascular pathology, compared with 67% of the controls, and 66% in the Parkinson's group.

The jugular venous reflux (JVR) occurs when the pressure gradient reverses the direction of blood flow in the veins, causing blood to leak backwards into the brain.

The

Following on from the evidence that Alzheimer’s brains show higher levels of metals such as iron, copper, and zinc, a mouse study has found that amyloid plaques in Alzheimer’s-like brains with significant neurodegeneration have about 25% more copper than those with little neurodegeneration.

An Italian study has found that a significant percentage of Alzheimer’s patients suffer from Obstructive Sleep Apnea Syndrome. This respiratory disorder, which causes people to temporarily stop breathing during their sleep, affects cerebral blood flow, promoting cognitive decline.

Data from 70 older adults (average age 76) in the Baltimore Longitudinal Study of Aging has found that those who reported poorer sleep (shorter sleep duration and lower sleep quality) showed a greater buildup of amyloid-beta plaques.

A new discovery helps explain why the “Alzheimer’s gene” ApoE4 is such a risk factor.

Analyses of cerebrospinal fluid from 15 patients with Alzheimer's disease, 20 patients with mild cognitive impairment, and 21 control subjects, plus brain tis

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news