One cause of damage in older brains, and how exercise can help

September, 2011

Two mice studies indicate that an increase in a protein involved in immune response may be behind the reduced ability of older brains to create new neurons, and that exercise produces a protein that helps protect against damage caused by illness, injury, surgery and pollutants.

In the first mouse study, when young and old mice were conjoined, allowing blood to flow between the two, the young mice showed a decrease in neurogenesis while the old mice showed an increase. When blood plasma was then taken from old mice and injected into young mice, there was a similar decrease in neurogenesis, and impairments in memory and learning.

Analysis of the concentrations of blood proteins in the conjoined animals revealed the chemokine (a type of cytokine) whose level in the blood showed the biggest change — CCL11, or eotaxin. When this was injected into young mice, they indeed showed a decrease in neurogenesis, and this was reversed once an antibody for the chemokine was injected. Blood levels of CCL11 were found to increase with age in both mice and humans.

The chemokine was a surprise, because to date the only known role of CCL11 is that of attracting immune cells involved in allergy and asthma. It is thought that most likely it doesn’t have a direct effect on neurogenesis, but has its effect through, perhaps, triggering immune cells to produce inflammation.

Exercise is known to at least partially reverse loss of neurogenesis. Exercise has also been shown to produce chemicals that prevent inflammation. Following research showing that exercise after brain injury can help the brain repair itself, another mouse study has found that mice who exercised regularly produced interleukin-6 (a cytokine involved in immune response) in the hippocampus. When the mice were then exposed to a chemical that destroys the hippocampus, the interleukin-6 dampened the harmful inflammatory response, and prevented the loss of function that is usually observed.

One of the actions of interleukin-6 that brings about a reduction in inflammation is to inhibit tumor necrosis factor. Interestingly, I previously reported on a finding that inhibiting tumor necrosis factor in mice decreased cognitive decline that often follows surgery.

This suggests not only that exercise helps protect the brain from the damage caused by inflammation, but also that it might help protect against other damage, such as that caused by environmental toxins, injury, or post-surgical cognitive decline. The curry spice cucurmin, and green tea, are also thought to inhibit tumor necrosis factor.

Reference: 

Related News

A new study finds out why curcumin might help protect against dementia, and links two factors associated with Alzheimer’s and Parkinson’s diseases: DNA damage by reactive oxygen species (ROS), and excessive levels of copper and iron in parts of the brain.

Some epidemiological studies have showed that people who smoke tend to have lower incidences of Parkinson's disease and Alzheimer's disease; this has been widely attributed to nicotine. However, nicotine's harmful effects make it a poor drug candidate.

A study involving 70 older adults (60-83) has found that those with at least ten years of musical training performed the best on cognitive tests, followed by those with one to nine years of musical study, with those with no musical training trailing the field.

A study following 837 people with

Supporting earlier research, a study involving 8,534 older adults (65+; mean age 74.4) has found those who were obese in middle age had almost four times (300%) more risk of developing dementia. Those who were overweight in middle age had a 1.8 times (80%) higher risk of developing dementia.

A study in which mice were exposed to polluted air for three 5-hour sessions a week for 10 weeks, has revealed that such exposure damaged neurons in the

Adding to the growing evidence that social activity helps prevent age-related cognitive decline, a longitudinal study involving 1,138 older adults (mean age 80) has found that those who had the highest levels of social activity (top 10%) experienced only a quarter of the rate of cognitive declin

A study involved 117 older adults (mean age 78) found those at greater risk of coronary artery disease had substantially greater risk for decline in verbal fluency and the ability to ignore irrelevant information. Verbal memory was not affected.

A study involving 200 older adults (70+) experiencing a stay in hospital has found that at discharge nearly a third (31.5%) had previously unrecognized low cognitive function (scoring below 25 on the MMSE if high-school-educated, or below 18 if not).

From the Whitehall II study, data involving 5431 older participants (45-69 at baseline) has revealed a significant effect of midlife sleep changes on later cognitive function. Sleep duration was assessed at one point between 1997 and 1999, and again between 2002 and 2004.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news