Older people less apt to recognize they've made a mistake

  • A small study has found that older adults (average age 68) are less able to recognize when they made errors.

A small study comparing 38 younger adults (average age 22) and 39 older adults (average age 68) found that the older adults were less able to recognize when they made errors.

The simple test involved looking away from a circle that appeared in a box on one side of a computer screen. It’s hard not to look at something that’s just appeared, and each time the participant glanced at the circle before shifting their gaze, they were asked whether they had made an error. They were then asked to rate how sure they were of their answer.

The younger participants were correct in acknowledging when they had erred 75% of the time, while the older test-takers were correct only 63% of the time. Moreover, when they judged themselves correct in error, the younger participants were far less certain of their judgment than the older ones.

This was confirmed by their eye dilation. Our pupils dilate when something unexpected occurs, and when we think we’ve made a mistake. Younger adults' pupils dilated when they thought they erred, and dilated to a smaller extent when they didn’t recognize their error. Older adults, on the other hand, showed no dilation at all when they committed an error they didn’t recognize.

Research has recently discovered the existence of "error neurons" — specific neurons in the human medial frontal cortex that signal the detection of errors. Perhaps future research will find that these neurons are, in some way, vulnerable to loss during the aging process. But this is pure speculation, and there are other possible causes for older adults' decreasing ability to recognize errors.

The important thing, on a practical level, is to be aware of this danger. I suspect, for most people, this will go a long way to improving the situation.

https://www.eurekalert.org/pub_releases/2018-08/uoi-sop080318.php

https://www.eurekalert.org/pub_releases/2018-12/cmc-np120418.php

Reference: 

Related News

A survey of 7,072 older adults in six provinces across China, with one rural and one urban community in each province, has identified 359 older adults with dementia and 328 with depression.

A survey of 7796 older adults (65+) living in three geographic areas in England has allowed us to compare dementia rates over time, with an identical survey having been taken between 1989 and 1994. The overall prevalence of dementia fell significantly, from 8.3% to 6.5%.

A large Danish study comparing two groups of nonagenarians born 10 years apart has found that not only were people born in 1915 nearly a third (32%) more likely to reach the age of 95 than those in the 1905 cohort, but members of the group born in 1915 performed significantly better on tests of

A five-year study involving 525 older adults (70+) found 46 had Alzheimer’s or aMCI and a further 28 went on to develop the conditions.

A three-year study involving 152 adults aged 50 and older, of whom 52 had been recently diagnosed with mild cognitive impairment and 31 were diagnosed with Alzheimer's disease, has found that those with mild or no cognitive impairment who initially had amyloid-beta plaques showed greater cogniti

More evidence for early changes in the eye in Alzheimer’s disease comes from a study involving both rats and postmortem human retinas.

Blocking a receptor involved in inflammation in the brains of mice with severe Alzheimer’s produced marked recovery in blood flow and vascular reactivity, a dramatic reduction in toxic amyloid-beta, and significant improvements in learning and memory.

A multi-year study involving 207 healthy older adults, in which their spinal fluids were repeatedly sampled and their brains repeatedly scanned, has found that disruptions in the default mode network emerges about the same time as chemical markers of Alzheimer’s appear in the spinal fluid (decre

An analysis of the anatomical connectivity in the brains of 15 people with Alzheimer's disease, 68 with mild cognitive impairment and 28 healthy older individuals, has found several measures showed disease effects:

The first detailed characterization of the molecular structures of amyloid-beta fibrils that develop in the brains of those with Alzheimer's disease suggests that different molecular structures of amyloid-beta fibrils may distinguish the brains of Alzheimer's patients with different clinical his

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news