Higher levels of social activity decrease the risk of cognitive decline

May, 2011
  • More evidence indicating that a lack of engagement in social activities increases the rate of cognitive decline in older adults.

Adding to the growing evidence that social activity helps prevent age-related cognitive decline, a longitudinal study involving 1,138 older adults (mean age 80) has found that those who had the highest levels of social activity (top 10%) experienced only a quarter of the rate of cognitive decline experienced by the least socially active individuals (bottom 10%). The participants were followed for up to 12 years (mean of 5 years).

Social activity was measured using a questionnaire that asked participants whether, and how often, in the previous year they had engaged in activities that involve social interaction—for example, whether they went to restaurants, sporting events or the teletract (off-track betting) or played bingo; went on day trips or overnight trips; did volunteer work; visited relatives or friends; participated in groups such as the Knights of Columbus; or attended religious services.

Analysis adjusted for age, sex, education, race, social network size, depression, chronic conditions, disability, neuroticism, extraversion, cognitive activity, and physical activity.

There has been debate over whether the association between social activity and cognitive decline is because inactivity leads to impairment, or because impairment leads to inactivity. This study attempted to solve this riddle. Participants were evaluated yearly, and analysis indicates that the inactivity precedes decline, rather than the other way around. Of course, it’s still possible that there are factors common to both that affect social engagement before showing up in a cognitive test. But even in such a case, it seems likely that social inactivity increases the rate of cognitive decline.

Reference: 

[2228] James, B. D., Wilson R. S., Barnes L. L., & Bennett D. A.
(2011).  Late-Life Social Activity and Cognitive Decline in Old Age.
Journal of the International Neuropsychological Society. FirstView, 1 - 8.

Related News

The latest finding from the large, long-running Health, Aging, and Body Composition (Health ABC) Study adds to the evidence that preventing or controlling diabetes helps prevent age-related cognitive decline.

A review of three high quality trials comparing the putative benefits of omega-3 fatty acids for preventing age-related cognitive decline, has concluded that there is no evidence that taking fish oil supplements helps fight cognitive decline.

While the ‘Alzheimer’s gene’ is relatively common — the ApoE4 mutation is present in around 15% of the population — having two copies of the mutation is, thankfully, much rarer, at around 2%.

Dementia is a progressive illness, and its behavioral and psychological symptoms are, for caregivers, the most difficult symptoms to manage.

A study designed to compare the relative benefits of exercise and diet control on Alzheimer’s pathology and cognitive performance has revealed that while both are beneficial, exercise is of greater benefit in reducing Alzheimer’s pathology and cognitive impairment.

I have reported previously on research suggesting that rapamycin, a bacterial product first isolated from soil on Easter Island and used to help transplant patients prevent organ rejection, might improve learning and memory.

Following on from mouse studies, a human study has investigated whether caffeine can help prevent older adults with mild cognitive impairment from progressing to dementia.

A study involving those with a strong genetic risk of developing Alzheimer’s has found that the first signs of the disease can be detected 25 years before symptoms are evident.

A number of studies have come out in recent years linking age-related cognitive decline and dementia risk to inflammation and infection (put inflammation into the “Search this site” box at the top of the page and you’ll see what I mean). New research suggests one important mechanism.

I’ve reported before on the evidence suggesting that carriers of the ‘Alzheimer’s gene’, APOE4, tend to have smaller brain volumes and perform worse on cognitive tests, despite being cognitively ‘normal’.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news